Show simple item record

dc.contributor.authorSánchez, Antonio Bernardo
dc.contributor.authorOrdóñez Galán, Celestino 
dc.contributor.authorLasheras, Fernando Sánchez
dc.contributor.authorde Cos Juez, Francisco Javier
dc.contributor.authorRoca Pardiñas, Javier 
dc.date.accessioned2019-03-11T08:57:23Z
dc.date.available2019-03-11T08:57:23Z
dc.date.issued2013
dc.identifier.citationAbstract and Applied Analysis, 2013, 238-259 (2013)spa
dc.identifier.issn10853375
dc.identifier.issn16870409
dc.identifier.urihttp://hdl.handle.net/11093/1213
dc.description.abstractAn SO2 emission episode at coal-fired power station occurs when the series of bihourly average of SO2 concentration, taken at 5-minute intervals, is greater than a specific value. Advance prediction of these episodes of pollution is very important for companies generating electricity by burning coal since it allows them to take appropriate preventive measures. In order to forecast SO2 pollution episodes, three different methods were tested: Elman neural networks, autoregressive integrated moving average (ARIMA) models, and a hybrid method combining both. The three methods were applied to a time series of SO2 concentrations registered in a control station in the vicinity of a coal-fired power station. The results obtained showed a better performance of the hybrid method over the Elman networks and the ARIMA models. The best prediction was obtained 115 minutes in advance by the hybrid model.spa
dc.language.isoengen
dc.publisherAbstract and Applied Analysisspa
dc.titleForecasting SO 2 pollution incidents by means of Elman artificial neural networks and ARIMA modelsen
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.1155/2013/238259
dc.identifier.editorhttp://www.hindawi.com/journals/aaa/2013/238259/spa
dc.publisher.departamentoEstatística e investigación operativaspa
dc.publisher.grupoinvestigacionInferencia Estatística, Decisión e Investigación Operativaspa
dc.subject.unesco3318.01 Minería del Carbónspa
dc.subject.unesco3308.01 Control de la Contaminación Atmosféricaspa
dc.subject.unesco1209 Estadísticaspa
dc.date.updated2019-03-06T15:08:26Z
dc.computerCitationpub_title=Abstract and Applied Analysis|volume=2013|journal_number=|start_pag=238-259|end_pag=-spa


Files in this item

[PDF]

    Show simple item record