Show simple item record

dc.contributor.authorMoreira, Carla Maria
dc.contributor.authorDe Uña Alvarez, Jacobo 
dc.date.accessioned2018-07-02T08:05:00Z
dc.date.available2018-07-02T08:05:00Z
dc.date.issued2012
dc.identifier.citationElectronic Journal of Statistics, 6: 501-521 (2012)spa
dc.identifier.issn19357524
dc.identifier.urihttp://hdl.handle.net/11093/1023
dc.description.abstractIn some applications with astronomical and survival data, doubly truncated data are sometimes encountered. In this work we introduce kernel-type density estimation for a random variable which is sampled under random double truncation. Two different estimators are considered. As usual, the estimators are defined as a convolution between a kernel function and an estimator of the cumulative distribution function, which may be the NPMLE [2] or a semiparametric estimator [9]. Asymptotic properties of the introduced estimators are explored. Their finite sample behaviour is investigated through simulations.spa
dc.language.isoengspa
dc.publisherElectronic Journal of Statisticsspa
dc.titleKernel density estimation with doubly truncated dataspa
dc.typearticlespa
dc.rights.accessRightsopenAccessspa
dc.identifier.doi10.1214/12-EJS683
dc.identifier.editorhttp://projecteuclid.org/euclid.ejs/1333113100spa
dc.publisher.departamentoEstatística e investigación operativaspa
dc.publisher.grupoinvestigacionInferencia Estatística, Decisión e Investigación Operativaspa
dc.subject.unesco12 Matemáticasspa
dc.date.updated2018-06-29T14:31:20Z
dc.computerCitationpub_title=Electronic Journal of Statistics|volume=6|journal_number=0|start_pag=501|end_pag=521spa


Files in this item

[PDF]

    Show simple item record