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a b s t r a c t 

The tuna fishing sector has faced important regulatory restrictions for years, mainly based on the number

of fish aggregating devices (FADs) allowed per vessel, which has threatened the survival of many tuna

firms. Various academics have studied this issue, proposing various solutions based on the reassignment

and sharing of FADs. However, previous research has focused primarily on the use of FADs and their

implications, rather than actually helping to optimize the tuna fleet’s fishing activity, and possibly for

this reason, none of these proposals has impacted current fishing practices. In light of this situation, our

research proposes a more equitable approach: we have modeled the tuna vessel problem as a cooperative

game, reallocating FADs among vessels, studying the Shapley value, and comparing the results achieved

with previous proposals. Although our approach is fairly standard in the literature, it is a novel solution to

a deep-rooted problem in this sector that also leads to a significant reduction in CO 2 emissions associated 

with fuel consumption. In fact, the application of our theoretical results to real data shows that there is

not only a significant scope for improvement for firms and their vessels –both gain more revenue– but

also a beneficial contribution to the environment in terms of reduced fuel consumption.

© 2023 The Author(s). Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license

( http://creativecommons.org/licenses/by-nc-nd/4.0/ )
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. Introduction

Our research explores how to improve tuna firms profits 

hrough cooperation among their vessels while reducing CO 2 emis- 

ions into the atmosphere. With this idea in mind, we model the 

una fishing problem as a cooperative game by studying the Shap- 

ey value. Our goal is to propose a fairer way of sharing the total

evenue between vessels and their firms, which would also help to 

educe pollution. 

We focus our study on the case of tropical tuna vessels, as this 

ype of vessel mostly uses fish aggregating devices (FADs) in their 

aily work. These tuna vessels usually work in small groups (two 

r three) belonging to the same firm ( Groba, Sartal, & Bergantiños, 

020 ). The modus operandi they follow is simple. First, each ship 

eleases (or “harvests”) its FADs in the ocean, in specific positions 

hosen by the skipper based on his experience. Once released, the 

ADs drift in the ocean, but the location chosen by the skipper will 

e key to the fishery’s success. In fact, once the FADs are “planted”, 

ach vessel retrieves only its own FADs, and an important part of 

he salary is a function of the catches made. It should be noted 

hat the firm that owns the tuna vessels is responsible for all run- 
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E-mail addresses: gbergant@uvigo.es (G. Bergantiños), cgroba@uvigo.es (C.
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ing costs, among which fuel consumption is by far the most im- 

ortant. 

Thus, taking into account the working operations, it seems ev- 

dent that any firm would be interested in the possibility of shar- 

ng and reallocating FADs among the vessels that make up its fleet. 

his would reduce the total costs by minimizing the distance trav- 

led (and the associated fuel), but maintain profits by distribut- 

ng a part to the skippers and crew members of the tuna ves- 

els. In fact, there are several authors who, aware of this situation, 

ave proposed various mechanisms for encouraging the reassign- 

ent and sharing of FADs. For example, Groba et al. (2020) pro- 

osed noncooperative mechanisms of FAD reallocation based on 

ayesian Nash equilibria. The firm offers a guarantee to the ves- 

els that share its FADs: the firm will compensate those vessels 

hat are harmed by the reassignment, so that they reach at least 

he amount initially allocated with their FADs. 

Given initiatives such as the one proposed, one would think 

hat the reallocation of FADs between vessels would be a common 

ractice in the sector. However, the tuna grouping highlights that 

he adoption of this initiative type has been low or even nonex- 

stent to date. The fact that profit maximization is not always en- 

ured, combined with skippers’ refusal to share their know-how as 

AD harvesters without commensurate rewards, are the main rea- 

ons for this initiative type’s failure. 
under the CC BY-NC-ND license
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Aware of this situation, we propose in our research a different 

pproach to the problem of allocating revenues from FAD sharing: 

ooperative game theory. First, we associate each tuna fishing 

roblem with a cooperative game and compute the Shapley value 

orresponding to that cooperative game. Then, we allocate revenue 

sing the calculated Shapley value. Although our approach is fairly 

tandard in the literature, it is a novel solution to a problem that is 

eeply rooted in this sector, and it allows for a considerable reduc- 

ion in the CO 2 emissions associated with fuel consumption. We 

nd inspiration for this problem’s solution in classic cases, such 

s airport problems, where the cost of a runway has to be shared 

mong aircraft ( Littlechild & Owen, 1973 ), or bankruptcy problems 

 O’Neill, 1982 ). Recent examples include revenue sharing for 

roadcasting sports leagues ( Bergantiños & Moreno-Ternero, 2020; 

022 ), the minimum cost spanning tree problem ( Bergantiños & 

idal-Puga, 2021 ), or how to allocate venture capital ( Boonen, 

e Waegenaere, & Norde, 2020 ). The book by Algaba, Fragnelli, 

 Sánchez-Soriano (2019) has a collection of papers exploring 

everal applications of Shapley’s value. 

The operation of the cooperative game associated with each 

una vessel problem is as follows. In the case of non-sharing, each 

essel recovers its FADs, and the firm pays them a percentage 

ased on the amount of tuna caught. As previously explained, the 

dditional revenue from sharing comes from the reduction of fuel 

onsumption by the vessels, motivated by the reallocation of FADs 

mong the vessels. As the fuel is paid by the firm, only coalitions 

ithin the firm can earn revenue from sharing. Therefore, coali- 

ions that are not within the firm obtain the same revenue as those 

n the non-sharing case. For each set of vessels S, the value of the 

oalition between S and the firm is calculated under the following 

ssumptions. Each vessel outside of S retrieves its FADs and sells 

hem to the firm. The FADs allocated to S are reallocated among 

he vessels in S by minimizing the total distance traveled. Each 

essel in S recovers its reallocated FADs. The fuel cost of all ves- 

els is paid by the firm. 

Accordingly, we study some of the Shapley value’s theoretical 

roperties that are interesting for the various casuistries of the 

eal problem considered in this research. Proposition 1 states that 

he Shapley value guarantees each agent (the vessels and the firm) 

t leastthe same revenues as those in the non-sharing case. That 

s, it provides incentives to cooperate. Proposition 2 says that the 

hapley value of each vessel can be decomposed as the sum of 

wo parts. The first depends on the amount of tuna recovered in 

ts FAD. The second comes from fuel savings. Similarly, the firm’s 

hapley value depends on two parts: the amount of tuna recov- 

red in all FADs and fuel savings. Proposition 3 states that, in the 

ase of two vessels, the Shapley value has a particular expression. 

he extra revenue obtained by the cooperation is divided equally 

etween the vessels and the firm. If we calculate the difference be- 

ween the Shapley value and the revenue obtained without coop- 

ration for each agent, we realize that this difference is the same 

or all agents. 

In practice, to apply the allocation obtained through the Shap- 

ey value could be complicated because agents should bargain 

mong them to achieve agreements. Nevertheless, in some cases, 

t is possible to implement the Shapley value through a mech- 

nism in which no direct agreement among agents is needed. 

amely, each agent takes a decision involving itself, and if all 

gents decide rationally, then the allocation obtained through 

he mechanism is the Shapley value. Thus, our paper is related 

ith the literature on implementation of the Shapley value as, 

or instance, Perez-Castrillo & Wettstein (2001) studying cooper- 

tive games with transferable utility, Bergantiños & Vidal-Puga 

2010) studying minimum cost spanning tree problems, Ju, Chun, & 

an den Brink (2014) studying the queuing problem, and Liu, Tsay, 

 Yeh (2022) studying the sequencing problem. We consider a sim- 
307 
le four-stage mechanism which is modeled as a non-cooperative 

ame in extensive form. We prove that the Shapley value of the co- 

perative game can be obtained as the payoff allocation given by a 

ubgame perfect Nash equilibrium of the non-cooperative game. 

The non-cooperative game has four stages. At Stage 1, each ves- 

el independently decides if it shares its FADs with other vessels. 

t Stage 2, the firm reassigns the FADs among the vessels that de- 

ided to share it. The other vessels maintain the initial assignment. 

t Stage 3, the vessels fish in the new assigned FADs. At Stage 4, 

he firm pays the vessels. Vessels that decided not to share their 

ADs are paid according to the amount recovered. Vessels that de- 

ided to share their FADs are paid according to the Shapley value. 

Finally, we apply the proposed theoretical development to real 

xamples. Our data come from different groups of tuna vessels re- 

rieving their FADs in the Indian Ocean during April 2018. In this 

ontext, we compute the Shapley value to show that a fair assign- 

ent can be found with respect to FAD sharing among vessels, and 

e compare the results with those of previous research to demon- 

trate their validity. When the right incentives are found, there is 

oom for overall improvement for all parties, including the skip- 

ers (crew), firm, and environment. In this study, we demonstrate 

hat the trade-off between the optimization and equity faced by 

una fishing firms is achievable. Because all of a firm’s FADs can be 

hared fairly, the best outcome for the firm, the skippers, and the 

nvironment can be achieved. 

The paper is organized as follows. In Section 2 , we carefully 

xplain the different elements of the tuna fishing vessel problem 

nd previous approaches. In Section 3 , we introduce the cooper- 

tive game and present the results related to the Shapley value. 

n Section 4 , we implement the Shapley value through a non- 

ooperative game with four stages. In Section 5 , we make an em- 

irical analysis, and finally, we conclude Section 6 by highlighting 

he paper’s main contributions and implications. 

. The tuna fishing vessels problem 

.1. Empirical problem and previous approaches 

The tropical tuna industry is one of the largest and most impor- 

ant fishing industries in the world, both in volume and in revenue. 

una fishing is practiced in all oceans of the world, and the indus- 

ry has grown steadily during the past 60 years. The purse seine is 

he most commonly used and fastest growing fishing gear target- 

ng tuna ( Parker, Vázquez-Rowe, & Tyedmers, 2015 ). In the open 

cean, many species, including tuna, interact with drifting objects 

n the surface, such as logs or branches, due to food webs that are 

pontaneously generated under these types of objects ( Dempster & 

aquet, 2004 ). 

Knowing this, since the mid-1980s, skippers have begun to ex- 

eriment with ways in which to maximize the potential of floating 

bjects as fishing tools. At first, reflectors and radio beacons were 

ttached to logs to improve detection at greater distances, and 

ventually, fishermen began to build drifting FADs equipped with 

lectronic FADs to increase the number of floating objects in the 

cean and aid in their detection ( Davies, Mees, & Milner-Gulland, 

014 ). Since then, the technology used to track FADs has con- 

inued to evolve steadily: from radio-based FADs to GPS-enabled 

ADs that use satellite communication and are equipped with echo 

ounders to estimate the amount of biomass aggregated under 

he FADs ( Groba et al., 2020 ). The advantage of using FADs to in-

rease tuna catches, coupled with the technological evolution of 

ADs, caused the purse seine industry to increase the use of FADs, 

ven for fleets that had traditionally relied on free school ( Lopez, 

oreno, Sancristobal, & Murua, 2014 ). 

The immediate consequence of this technological evolution was 

 considerable increase in the number of catches in a short period, 
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hich led regional fisheries management organizations (RFMOs) to 

ncrease regulations for FAD fishing. Thus, a primary constraint cur- 

ently affecting tuna vessels is the reduction in the number of FADs 

hat can be handled at the same time. Without questioning the 

eed for this type of initiative, it should be noted that these lim- 

tations are stifling for many small firms due to the reduction in 

ncome and, above all, the continuous increase in costs, especially 

hose derived from fuel consumption. 

This is the starting point of our research. As the FADs are based 

n satellite technology, the FAD information can be shared, which 

eans that not only can the FAD owner receive this information 

ut also other vessels can. When a group of vessels receive the 

ame FAD information, it is considered to be a shared group. When 

his occurs, tuna vessels may share their FADs with other vessels, 

specially in cases where they all belong to the same firm. How- 

ver, this rarely happens despite the interesting economic and en- 

ironmental implications. 

Authors such as Groba et al. (2020) have shown that FAD shar- 

ng helps firms to improve fishing information among vessels and 

lso leads to certain profitability improvements due to the fuel sav- 

ngs realized when vessels operate in large sea areas. They propose 

 mechanism called “FAD reassignment with compensation” (i.e., a 

on-cooperative game with incomplete information based on the 

ayesian Nash equilibrium). The firm offers a guarantee to vessels 

hat share their FADs: the firm will pay, at a minimum, the origi- 

al number of FADs allocated to the vessel. For example, if a vessel 

hat initially had 20 FADs, shares them and is reassigned with 18, 

he firm pays to assume the remaining two FADs. If the vessel is 

eassigned with the same or more FADs than it had initially, it will 

e paid according to the number of FADs reassigned. This shows 

hat the revenues for the firm and the individual vessels are equal 

r higher when FADs are shared. Moreover, the expected revenue 

hat each vessel obtains by sharing its FADs, regardless of the FADs’ 

ositions and other vessels’ decisions, is never lower than the ex- 

ected utility they obtain by not sharing them. 

Although this mechanism is found to be suitable for the firm 

nd the vessels, the aggregate revenues of all agents may not be 

aximized in some cases. In addition, the distribution may not be 

ntirely equitable because it does not explicitly take into account 

he contribution from each player (firm and tuna skippers) to the 

nal result. 

It is possibly because of these issues that, despite the proven 

enefits for the firm, this practice is not as widespread as one 

ould expect, and the exchange is limited exclusively to small 

roups of vessels based on personal relationships and trust be- 

ween skippers. Nevertheless, it should not be forgotten that the 

ncentives of the purse seine crew are clear: they depend mainly 

n the amount of tuna they catch, and maximizing catches is their 

entral objective. However, the firm’s incentives go beyond the 

uantity of fish, including all crew costs, supplies, goods, and fuel, 

mong others. As the cost of fuel is borne entirely by the firm, the 

essels –more specifically, the skippers– have no direct incentive 

o share their FADs with the other vessels to minimize the distance 

raveled. However, the firm does have incentives. To the extent that 

uel consumption is reduced due to fewer trips during FAD collec- 

ion, revenues increase. In addition, the aggregate revenue of all 

gents would be maximized when the distance traveled to recover 

ADs is minimized. We understand that profit maximization is not 

lways ensured and that skippers refuse to share their know-how 

s FAD harvesters without commensurate reward, which are the 

ain reasons for the failure of this initiative type. 

In this context, our research aims to evaluate a fairer shar- 

ng method, which also generates more benefits for all and en- 

ourages cooperation among the various tuna vessels. Previous re- 

earch has focused more on the use of FADs and their implications, 

ather than actually helping to optimize the tuna fleet’s fishing ac- 
308 
ivity ( Groba et al., 2020; Groba, Sartal, & Vázquez, 2015; 2018 ). 

iven the new FAD restrictions, which are likely to tighten further, 

he tuna fishing industry needs to become more efficient and find 

ays in which to be more optimal. However, if these practices are 

o prevail on a day-to-day basis, the industry must be fair with re- 

pect to the possible sharing of FADs. Consequently, we have stud- 

ed the same situation but from a cooperative approach. We asso- 

iate a cooperative game with each tuna problem, for which the 

alue of the grand coalition is no more than the maximum aggre- 

ate revenue of the agents. We then computed the Shapley value 

f the cooperative game, which allocates the maximum aggregate 

evenue among the agents. The advantage of the Shapley value is 

hat the allocation among the agents meets some principles of fair- 

ess, whereas the Bayesian Nash equilibrium responds to private 

ncentives, for example, in Groba et al. (2020) . 

.2. Theoretical model 

After describing the tuna problem, we begin from the theoreti- 

al model of Groba et al. (2020) to propose our own solution based 

n cooperative models. As we have made a different analysis, some 

hanges were necessary to adapt to the notation of cooperative 

ames better. 

Let N = { 1 , . . . , n } be the set of tuna vessels, briefly, vessels. We 

ssume that all vessels work for the same firm, which we denote 

y f . 

Let �N be the set of all orders over the finite set N ⊂ N . 

There is a finite number of FADs that have been assigned to 

he vessels. We denote the set of all FADs by B = { b 1 , . . . , b m } . The
osition of each FAD b ∈ B is given by ( x ( b ) , y ( b ) ) wher e x ( b ) de-

otes the latitude and y ( b ) the longitude. In addition, we denote 

 x ( i ) , y ( i ) ) the position of vessel i at the beginning of the process. 

In practice, each vessel releases its FADs in the ocean, in spe- 

ific positions chosen by the skipper based on his experience. Thus, 

ach FAD is initially assigned to the vessel that released the FAD. 

or each b ∈ B , let α( b ) ∈ N denote the vessel to which FAD b is

nitially assigned. Thus, each vessel i ∈ N has an initial endowment 

f FADs given by 

 
α
i = { b ∈ B : α( b ) = i } . 
Given S ⊂ N, let d ( S ) denote the minimum distance that ves- 

els in S have to travel for recovering all FADs in 
⋃ 

i ∈ S B αi . We now

xplain formally how to compute d ( S ) . 

Let � : 
⋃ 

i ∈ S B αi → S a function that reassigns the FADs initially 

ssigned to vessels in S
(⋃ 

i ∈ S B αi 
)
among vessels in S. We denote 

y R 
(⋃ 

i ∈ S B αi 
)
the set of all possible functions � : 

⋃ 

i ∈ S B αi → S. 

For each vessel i ∈ S we denote by B 
� 
i 

the FADs assigned by �
o vessel i. Namely, 

 

� 
i 

= 

{ 

b ∈ 

⋃ 

i ∈ S 
B αi : � ( b ) = i 

} 

. 

Given π ∈ �
B 
� 
i 
we denote by d � ( i, π) the distance traveled by 

essel i for recovering the FADs in B 
� 
i 

following the order given 

y π. We denote by d � ( i ) the minimum distance traveled by ves- 

el i for recovering all FADs in B 
� 
i 
, which is computed minimizing 

 
� ( i, π) on �B 

� 
i 
. Formally, 

 
� ( i ) = min 

{ 

d � ( i, π) : π ∈ �B 
� 
i 

} 

. 

Let d � ( S ) denote the distance traveled by all vessels in S for 

ecovering all FADs in 
⋃ 

i ∈ S B αi when each vessel i ∈ S recovers the 

ADs in B 
� 
i 
. Thus, 

 
� ( S ) = 

∑ 

i ∈ S 
d � ( i ) . 
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Fig. 1. Example 1 . 
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Then, d ( S ) is computed by minimizing d � ( S ) on R 
(⋃ 

i ∈ S B αi 
)
. 

amely, 

 ( S ) = min 

{ 

d � ( S ) : � ∈ R 

( ⋃ 

i ∈ S 
B αi 

) } 

. 

Notice that given S, T ⊂ N with S ∩ T = ∅ we have 

 ( S ∪ T ) ≤ d ( S ) + d ( T ) . (1) 

To compute the minimum distance in practice is difficult be- 

ause there is not a polynomial algorithm. In the computations of 

ection 5 , we have used the nearest neighbor strategy. 

We make the following assumptions. 

1. The firm knows the location of all vessels and all FADs. 

Each vessel knows the location of all of its assigned FADs and 

does not know the location of the FADs assigned to other ves- 

sels. 

2. Each vessel has a cost c per mile traveled, and this cost is paid 

for by the firm. 

3. Vessels cannot know in advance the amount of tuna they will 

find at each FAD. Using q ( b ) , we denote the amount of tuna 

recovered in FAD b. This amount will be known only after fish- 

ing. Using q α
i 

= 

∑ 

b∈ B α
i 
q ( b ) , we denote the total amount of tuna 

recovered in the FADs of vessel i . 

4. Each vessel receives a price p for each ton of tuna recovered. 

5. The firms sells the tuna collected from the vessels. Let p f be 

the price for each ton of tuna. 

Once a vessel has recovered all of its FADs, the firm pays the 

essel. Namely, each vessel i ∈ N obtains 

pq αi (2) 

The firm sells all the tuna recovered. In addition, the firm has 

o pay the cost associated with the vessels’ travel. Thus, the firm 

btains 

p f − p 
)∑ 

i ∈ N 
q αi − c 

∑ 

i ∈ N 
d ( i ) (3) 

We assume that every vessel generates revenues by recovering 

he tuna of its FADs. Namely, the fuel cost for recovering all the 

essels’ FADs plus the price paid by the firm to the vessel is not 

arger than the price in the market of the total amount of tuna 

ecovered. Formally, for each i ∈ N, 

p f q 
α
i ≥ pq αi + cd ( i ) 

In the following numerical and simple example, we try to clar- 

fy the previously introduced model. It will be used through the 

aper for clarifying other concepts introduced later. 

xample 1. We consider the following tuna vessel fishing problem 

 Fig. 1 ). 

• N = { 1 , 2 } . 
• B = { b 1 , b 2 } . 
• The vessels and FADs are located in a line, from left to right. 

The distance between Vessel 1 and FAD b 2 is 500; the distance 

between FAD b 2 and b 1 is 300; and the distance between FAD 

b 1 and Vessel 2 is 700. 
• α( b 1 ) = 1 and α( b 2 ) = 2 . Thus, B α

1 
= { b 1 } , and B α2 = { b 2 } . 

• d ( 1 ) = 500 + 300 , d ( 2 ) = 700 + 300 , and d ( 1 , 2 ) = 500 + 700

(Vessel 1 recovers b , and Vessel 2 recovers b ) . 
2 1 

309
• c = 29 . 
• q ( b 1 ) = 110 , q ( b 2 ) = 130 , q α

1 
= 110 , and q α

2 
= 130 . 

• p = 140 , and p f = 1400 . 

As the fuel cost is paid by the firm, vessels do not have a di-

ect incentive to share their FADs to minimize the distance trav- 

led. Nevertheless, the firm has incentives. If the fuel cost is re- 

uced, then the revenue of the firm will be increased. In addition, 

he aggregated revenue of all agents is maximized when the dis- 

ance traveled for recovering the FADs is minimized. 

Thus, having established the theoretical assumptions and hav- 

ng seen the previous example, we evaluated the previously de- 

cribed tuna fishing vessel problem ( Section 2.1 ), but from a coop- 

rative approach based on the calculation of the Shapley value. 

. The cooperative game approach to the tuna fishing vessel 

roblem 

The cooperative game approach to the tuna vessel problem re- 

uires several assumptions. First, we assume that the vessels and 

he firm cooperate and share the revenues of the cooperation 

mong themselves. Second, we take the status quo , from where 

ooperation could arise, as the situation in which vessels recover 

heir FADs and the firm pays them according to the amount of tuna 

shed. Thus, the revenues come from the vessels’ reduction in fuel 

onsumption, which is a result of the FADs reassignments among 

he vessels. Finally, we associate each tuna fishing vessel problem 

ith a cooperative game. Then, we study the Shapley value of the 

ooperative game, and we argue that the Shapley value is a good 

ay in which to divide the revenues of the cooperation among the 

essels and the firm. 

We first introduce the technical notation. We denote the set of 

eal numbers as R . Given a finite set N, we denote the cardinality

f N as | N | . 
Given x, y ∈ R 

N , we write x ≤ y , when x i ≤ y i for all i ∈ N. Given

 ∈ R 
N and S ⊂ N, we denote x S = ( x i ) i ∈ S . 

Given π ∈ �N , let P re ( i, π) denote the set of elements of N, 

hich come before i in the order given by π, i . e . P re ( i, π) =
 j ∈ N | π( j ) < π( i ) } . Given S ⊂ N, let πS denote the order induced 

y π among agents in S. 

We now introduce some well-known concepts of cooperative 

ame theory that will be used later. 

A game with transferable utility ( T U game) is a pair 
(
N 

′ , v 
)
, 

here N 
′ is a finite set and v : 2 N ′ → R is the characteristic func-

ion satisfying v (∅ ) = 0 . 

We denote by Sh 
(
N 

′ , v 
)
the Shapley value ( Shapley, 1953 ) of the 

 U game 
(
N 

′ , v 
)
. For each i ∈ N 

′ , 

h i 
(
N 

′ , v 
)

= 

1 

| N 
′ | ! 

∑ 

π∈ �N ′ 
( v ( P re ( i, π) ∪ { i } ) − v ( P re ( i, π) ) ) 

= 

∑ 

S⊂N ′ \{ i } 

| S | ! (| N 
′ | − | S | − 1 

)
! 

| N 
′ | ! ( v ( S ∪ { i } ) − v ( S ) ) . (4) 

When no confusion arises we write v instead of 
(
N 

′ , v 
)
. 

We now associate a cooperative game 
(
N 

′ , v q α
)
with every tuna 

shing vessel problem as follows. Here, N 
′ = N ∪ { f } , where N is

he set of vessels, and f is the firm. Given i ∈ N, v q α ( i ) is the rev-

nue of vessel i from recovering all of its FADs. Namely, v q α ( i ) = 

pq α
i 
. Similarly, v q α ( f ) is given by expression (3) . 

Given S ⊂ N, there is no extra revenues from the cooperation. 

amely, 

 
q α ( S ) = 

∑ 

i ∈ S 
pq αi = 

∑ 

i ∈ S 
v q α ( i ) . (5) 
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Table 1 

Characteristic function of Example 1 . 

Coalition Characteristic function 

S v q α ( S ) 

1 140 × 110 = 15 , 400 

2 140 × 130 = 18 , 200 

f (1400 − 140) × (110 + 130) − 29 × (800 + 1000) = 250 , 200 

1,2 33,600 

1 , f 265,600 

2 , f 268,400 

1 , 2 , f 301,200 

Table 2 

Revenues of Example 1 . 

Agents 1 2 f

v q α ( i ) 15,400 18,200 250,200 

Sh i 
(
v q α

)
21,200 24,000 256,000 

N

S

t
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Given S ⊂ N, we define v q α ( S ∪ { f } ) as follows. Each vessel in 

\ S recovers its FADs and sells to the firm. The FADs assigned to 

are reassigned among vessels in S, minimizing the total distance 

raveled. Each vessel in S recovers its reassigned FADs. The fuel of 

ll vessels is paid for the firm. Namely, 

 
q α ( S ∪ { f } ) = 

(
p f − p 

)∑ 

i ∈ N 
q αi + p 

∑ 

i ∈ S 
q αi − c 

[ 

d ( S ) + 

∑ 

i ∈ N\ S 
d ( i ) 

] 

= 

(
p f − p 

) ∑ 

i ∈ N\ S 
q αi + p f 

∑ 

i ∈ S 
q αi − c 

[ 

d ( S ) + 

∑ 

i ∈ N\ S 
d ( i ) 

] 

.

We can give an alternative expression for v q α ( S ∪ { f } ) through 
 
q α ( i ) . 

 
q α ( S ∪ { f } ) = p 

∑ 

i ∈ S 
q αi + 

(
p f − p 

)∑ 

i ∈ N 
q αi − c 

∑ 

i ∈ N 
d ( i ) 

− c 

[ 

d ( S ) −
∑ 

i ∈ S 
d ( i ) 

] 

= 

∑ 

i ∈ S∪{ f } 
v q α ( i ) + c 

[ ∑ 

i ∈ S 
d ( i ) − d ( S ) 

] 

(6) 

Then, the revenue generated when all agents cooperate is given 

y 

 
q α ( N ∪ { f } ) = p f 

∑ 

i ∈ N 
q αi − cd ( N ) 

= 

∑ 

i ∈ N∪{ f } 
v q α ( i ) + c 

( ∑ 

i ∈ N 
d ( i ) − d ( N ) 

) 

. 

In Example 1 , the characteristic function is given by Table 1 . 

The first row of Table 2 
(
v q α ( i ) 

)
is the revenue obtained by 

he agents when they decide not to cooperate (namely, they do 

ot share the FADs). The second row is the utility achieved when 

hey cooperate, and the revenues are divided following the Shapley 

alue. 

Notice that all agents obtain more under the Shapley value. 

ater, we will prove that this fact holds for any tuna fish- 

ng vessel problem. Moreover, the earnings from cooperation 

Sh i 
(
v q α

)
− v q α ( i ) 

)
are the same for all agents (5800). This does 

ot happen in general, for instance, in the case of real data, which 

e will discuss in Section 5 . Nevertheless, we will prove that this 

appens for any case with two vessels. 

In Proposition 1 , we prove that the Shapley value provides each 

essel and the firm revenues larger than the revenues they will 
310 
btain in the case of non-cooperation. We first prove the following 

emma. 

emma 1. For each tuna fishing vessel problem, v q α is superadditive. 

amely, for each S, T ⊂ N ∪ { f } with S ∩ T = ∅ , we have that 

 
q α ( S ∪ T ) ≥ v q α ( S ) + v q α ( T ) . 

roof. We consider two cases. 

Assume first that f / ∈ S ∪ T . By (5) , 

 
q α ( S ∪ T ) = 

∑ 

i ∈ S∪ T 
v q α ( i ) = v q α ( S ) + v q α ( T ) . 

Assume now that f ∈ S ∪ T . We consider that f ∈ S (the case f ∈
 is similar and we omit it). By (6) 

 
q α ( S ∪ T ) = 

∑ 

i ∈ S∪ T 
v q α ( i ) + c 

[ ∑ 

i ∈ ( S\ { f } ) ∪ T 
d ( i ) − d ( ( S\ { f } ) ∪ T ) 

] 

= 

∑ 

i ∈ S 
v q α ( i ) + c 

[ ∑ 

i ∈ S\ { f } 
d ( i ) − d ( S\ { f } ) 

] 

+ 

∑ 

i ∈ T 
v q α ( i ) 

+ c 

[ 

d ( S\ { f } ) + 

∑ 

i ∈ T 
d ( i ) − d ( ( S\ { f } ) ∪ T ) 

] 

= v q α ( S ) + v q α ( T ) 

+ c 

[ 

d ( S\ { f } ) + 

∑ 

i ∈ T 
d ( i ) − d ( ( S\ { f } ) ∪ T ) 

] 

. 

By (1) , 

 ( S\ { f } ) + 

∑ 

i ∈ T 
d ( i ) ≥ d ( S\ { f } ) + d ( T ) ≥ d ( ( S\ { f } ) ∪ T ) . 

Hence, v q α ( S ∪ T ) ≥ v q α ( S ) + v q α ( T ) . �

roposition 1. For each tuna fishing vessel problem and each i ∈ N ∪
 f } , 
h i 

(
v q α

)
≥ v q α ( i ) . 

roof. By (4) , it is enough to prove that for each i ∈ N ∪ { f } and
ach S ⊂ ( N ∪ { f } ) \{ i } , we have that v q α ( S ∪ { i } ) − v q α ( S ) ≥ v q α ( i ) . 

or Lemma 1 , it holds. �

Consider the cooperative game v d defined as follows. For each 

 ⊂ N, 

 
d ( S ) = 0 and v d ( S ∪ { f } ) = d ( S ) . 

Notice that this game is computed using only the distances. 

The next proposition gives an expression for the Shapley value 

f v q α using the game v d and the individual value of each agent. 
e prove that, if we apply the Shapley value, every vessel is paid 

ccording to the amount of tuna recovered in its FAD, plus an extra 

mount that comes from the fuel savings. In addition, the firm is 

aid according to the amount of tuna recovered in all of the FADs, 

lus an extra amount that comes from the fuel savings. 

roposition 2. For each tuna fishing vessel problem, the Shapley 

alue of v q α can be computed as follows: 

Sh i 
(
v q α

)
= v q α ( i ) + c 

[
d ( i ) 

2 
− Sh i 

(
v d 

)]
for each i ∈ N 

h f 
(
v q α

)
= v q α ( f ) + c 

[ ∑ 

i ∈ N 

d ( i ) 

2 
− Sh f 

(
v d 

)] 

. 
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roof. Consider the cooperative games v 1 and v 2 , where for each 

 ⊂ N, 

 
1 ( S ) = 

∑ 

i ∈ S 
v q α ( i ) and v 1 ( S ∪ { f } ) = 

∑ 

i ∈ S∪{ f } 
v q α ( i ) . 

 
2 ( S ) = 0 and v 2 ( S ∪ { f } ) = 

∑ 

i ∈ S 
d ( i ) . 

By (5) and (6) , we have that for each S ⊂ N ∪ { f } , 
 
q α ( S ) = v 1 ( S ) + c 

[
v 2 ( S ) − v d ( S ) 

]
. 

As the Shapley value is a linear function on the characteristic 

unction, we have that for each i ∈ N ∪ { f } , 
h i 

(
v q α

)
= Sh i 

(
v 1 

)
+ c 

[
Sh i 

(
v 2 

)
− Sh i 

(
v d 

)]
. 

By (4) , for each i ∈ N ∪ { f } , 
h i 

(
v 1 

)
= v q α ( i ) . 

We now compute Sh i 
(
v 2 

)
for each i ∈ N ∪ { f } . Let π be an order

ver N ∪ { f } . Given i ∈ N, 

 
2 ( P re ( i, π) ∪ { i } ) − v 2 ( P re ( i, π) ) = 

{
d ( i ) if f ∈ P re ( i, π) 
0 otherwise . 

As f ∈ P re ( i, π) in half of the orders, 

h i 
(
v 2 

)
= 

d ( i ) 

2 
. 

Because the Shapley value satisfies efficiency (namely, 
 

i ∈ N∪{ f } Sh i (v 2 ) = v 2 (N ∪ { f } ) and for each i ∈ N, Sh i 
(
v 2 

)
= 

d ( i ) 
2 ,

e deduce that 

h f 
(
v 2 

)
= 

∑ 

i ∈ N 

d ( i ) 

2 
. 

�

As observed, another important consequence of this proposition 

s related to the monotonicity property of the Shapley value. If the 

alue of all coalitions involving an agent increases, then the Shap- 

ey value of this agent increases. Nevertheless, it could be the case 

hat the Shapley value of the rest of the agents decrease. Then, the 

mprovement of an agent’s performance can produce a negative ex- 

ernality among the rest of the agents. In the case of tuna fishing 

essel problems, we can study a similar aspect. Suppose that the 

atches in the FADs of a vessel increase, what happens? Accord- 

ng to Proposition 2 , the Shapley value of the vessel and the firm

ncrease, whereas the Shapley values of the rest of the vessels re- 

ain the same. Thus, the improvement of the performance of a 

essel produces a positive externality in the firm and nothing in 

he rest of the vessels. 

Finally, in Proposition 3 , we prove that, for the two-vessel case, 

he revenues of cooperation under the Shapley value are the same 

or all agents. 

roposition 3. For each tuna fishing vessel problem where N = 

 1 , 2 } , we have 

h 1 
(
v q α

)
− v q α ( 1 ) = Sh 2 

(
v q α

)
− v q α ( 2 ) = Sh f 

(
v q α

)
− v q α ( f ) . 

roof. By Proposition 2 , 

h 1 
(
v q α

)
− v q α ( 1 ) = c 

[
d ( 1 ) 

2 
− Sh 1 

(
v d 

)]

h 2 
(
v q α

)
− v q α ( 2 ) = c 

[
d ( 2 ) 

2 
− Sh 2 

(
v d 

)]
, and 

h f 
(
v q α

)
− v q α ( f ) = c 

[
d ( 1 ) 

2 
+ 

d ( 2 ) 

2 
− Sh f 

(
v d 

)]
311 
By (4) , 

h 1 
(
v q α

)
− v q α ( 1 ) = c 

[
d ( 1 ) 

2 
− 2 d ( 1 , 2 ) + d ( 1 ) − 2 d ( 2 ) 

6 

]

= 

c 

3 
[ d ( 1 ) + d ( 2 ) − d ( 1 , 2 ) ] . 

Similarly, we can prove that 

h 2 
(
v q α

)
− v q α ( 2 ) = 

c 

3 
[ d ( 1 ) + d ( 2 ) − d ( 1 , 2 ) ] . 

Finally, by (4) 

h f 
(
v q α

)
− v q α ( f ) = c 

[
d ( 1 ) 

2 
+ 

d ( 2 ) 

2 
− 2 d ( 1 , 2 ) + d ( 1 ) + d ( 2 ) 

6 

]

= 

c 

3 
[ d ( 1 ) + d ( 2 ) − d ( 1 , 2 ) ] . 

�

. Implementing the Shapley value 

In this section, we explain how to implement in practice the 

llocation suggested by the Shapley value. Usually, to achieve the 

llocation proposed by the Shapley value, agents need to bargain 

mong them. Sometimes, the bargaining could be complicated be- 

ause each agent tries to maximize its own allocation. In this case, 

e do not have this problem because the allocation could be ob- 

ained through a procedure in which no direct agreement among 

gents is needed. Each agent takes a decision involving itself, and 

f all agents decide rationally, then the allocation obtained through 

he mechanism is the Shapley value. 

We associate a non-cooperative game in extensive form with 

ach tuna fishing vessel problem. Thus, we study the Subgame Per- 

ect Nash Equilibria ( SP NE ) of the non-cooperative game. Our main 

esult says that the Shapley value of the cooperative game can be 

btained as the payoff vector associated with a SP NE of the non- 

ooperative game. 

We now introduce the non-cooperative game formally. 

1. Stage 1. Sharing information about the FADs . 

Each vessel independently decides if it share its FADs with 

other vessels. Formally, the action set of each vessel i is given 

by 

A 1 i = { yes, no } . 
Then, yes means that vessel i share its FADs, and no means that 

vessel i does not share its FADs. 

Let a 1 
i 

∈ A 1 
i 
denote the action chosen by vessel i . We denote that

N 
yes = 

{
i ∈ N : a 1 i = yes 

}
and N 

no = 

{
i ∈ N : a 1 i = no 

}
. 

2. Stage 2. Reassigning the FADs . 

The firm reassigns the FADs among the vessels that decided to 

share it. The other vessels maintain the initial assignment. 

Formally, the action set of the firm is given by 

A 2 f = 

{ 

� : B → N : � ( b ) = α( b ) if b ∈ 

⋃ 

i ∈ N no 
B α
i 

and � ( b ) ∈ N 
yes if b ∈ 

⋃ 

i ∈ N yes 
B α
i 

} 

Thus, each vessel i is reassigned to the following FADs: 

B 
� 
i 

= { b ∈ B : � ( b ) = i } . 
Notice that for each i ∈ N 

no , B 
� 
i 

= B α
i 
. 

Each vessel i ∈ N 
yes recovers the FADs in B 

� 
i 
travelling the min- 

imum distance. Let d � ( N 
yes ) denote the sum of the distances 

traveled by all vessels in N 
yes . 
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3. Stage 3. Fishing . 

The vessel fish in the new assigned FADs. For each i ∈ N and 

each b ∈ B 
� 
i 
, we denote by q ∗( b ) the amount of tuna in FAD b.

Remember that q ( b ) denotes the amount of tuna recovered by 

vessel i in FAD b. Of course, q ( b ) ≤ q ∗( b ) . At each FAD b, vessel

i can fish efficiently and recover all tuna in the FAD (namely, 

q ( b ) = q ∗( b ) ) , or not to fish efficiently and recover only a part

of the tuna (namely, q ( b ) < q ∗( b ) ) . Thus, the action set of vessel
i is given by 

A 3 i = 

{ 

( q ( b ) ) b∈ B � 
i 
: 0 ≤ q ( b ) ≤ q ∗( b ) for all b ∈ B 

� 
i 

} 

. 

4. Stage 4. The firm pays the vessels . 

Vessels that decided not to share their FADs are paid accord- 

ing to the amounts of tuna recovered. Vessels that decided to 

share their FADs are paid according with the Shapley value of 

the cooperative game induced by N 
yes . Formally, 

Each i ∈ N 
no receives pq α

i 
. 

Each i ∈ N 
yes receives Sh i 

(
N 
yes ∪ { f } , v q α,� 

)
, where v q α,� is de- 

fined as follows. For each S ⊂ N 
yes , 

• v q α,� ( S ) is defined as in (5) . 
• v q α,� ( S ∪ { f } ) is defined as in (6) by replacing d ( S ) by d � ( S ) , 

where d � ( N 
yes ) has been defined at Stage 2 and d � ( S ) = 

d ( S ) when S � = N 
yes . 

The firm sells all of the tuna recovered, pays the cost of the 

fuel, and pays to the vessels as above. Thus, the firm receives 

p f 
∑ 

i ∈ N 
q αi − c 

( ∑ 

i ∈ N no 
d ( i ) + d � ( N 

yes ) 

) 

−
∑ 

i ∈ N no 
pq αi −

∑ 

i ∈ N yes 
Sh i 

(
N 

yes ∪ { f } , v q α,� 
)
. (7) 

The first and most important result indicates that if vessels 

hare their FADs, the firm reassigns the FADs, minimizing the dis- 

ance travelled, and the vessels fish efficiently, then, we have a 

P NE of the non-cooperative game. Under this SP NE, the payoff to 

very agent (the vessels and the firm) coincides with the Shapley 

alue of the cooperative game. 

roposition 4. The following combination of strategies is a SP NE : 

Stage 1. For each i ∈ N, a 1 
i 

= yes. 

Stage 2. The firm selects � such that � ( b ) = α( b ) if b ∈ 

⋃ 

i ∈ N no B αi 
and d � ( N 

yes ) = d ( N 
yes ) . 

Stage 3. For each i ∈ N, each � selected by the firm at Stage 2, and

each b ∈ B 
� 
i 
, q ( b ) = q ∗( b ) . 

Besides, the payoff allocation induced by the combination of strate- 

ies is the Shapley value of the cooperative game. 

roof. It is obvious that the payoff allocation induced by the com- 

ination of strategies is the Shapley value of the cooperative game. 

We now prove that this combination is a SP NE. This game has 

hree subgames, given by the first three stages. We proceed with 

ackward induction. Then, we first analyze the subgame given by 

tage 3. Let i ∈ N. Suppose that vessel i, instead of fishing effi-

iently ( q ( b ) = q ∗( b ) for each b ∈ B 
� 
i 
) , decides to do something

ifferent. Namely, vessel i plays 
(
q ′ ( b ) 

)
b∈ B � 

i 

∈ A 3 
i 
such that q ′ ( b ) < 

 
∗( b ) for some b ∈ B 

� 
i 
. Hence, 

 

′ � 
i 

= 

∑ 

b∈ B � 
i 

q ′ ( b ) < 

∑ 

b∈ B � 
i 

q ∗( b ) = q 
� 
i 
. 

We consider two cases. 

1. i ∈ N 
no . Playing ( q ∗( b ) ) b∈ B � 

i 
vessel i yields pq 

� 
i 
, whereas playing (

q ′ ( b ) 
)
b∈ B � generates pq 

′ � 
i 

, which is smaller. Thus, vessel i does 

i 

312 
not improve by deviating from the strategy of the statement at 

Stage 3. 

2. i ∈ N 
yes . By playing ( q ∗( b ) ) b∈ B � 

i 
, and using arguments similar to 

those used in the proof of Proposition 2 , we can prove that ves-

sel i yields 

Sh i 
(
N 

yes ∪ { f } , v q α,� 
)

= p 
∑ 

b∈ B α
i 

q ∗( b ) + c 

[
d ( i ) 

2 
− Sh i 

(
v d � 

)]
. 

By playing 
(
q ′ ( b ) 

)
b∈ B � 

i 

and using arguments similar to those 

used in the proof of Proposition 2 , we can prove that vessel 

i yields 

p 

⎛ 

⎝ 

∑ 

b∈ B α
i 
∩ B � 

i 

q ′ ( b ) + 

∑ 

b∈ B α
i 
\ B � 

i 

q ∗( b ) 

⎞ 

⎠ + c 

[
d ( i ) 

2 
− Sh i 

(
v d � 

)]
. 

Because q ′ ( b ) ≤ q ∗( b ) for all b ∈ B α
i 

∩ B 
� 
i 
, vessel i does not im-

prove by deviating from the strategy of the statement at Stage 

3. 

We now analyze the subgame given by Stage 2. Suppose that 

he firm chooses � 
′ such that d � ′ ( N 

yes ) > d ( N 
yes ) . 

By (7) , the utility of the firm under � minus the utility of the 

rm under � 
′ is the following: 

 

(
d � 

′ 
( N 

yes ) − d � ( N 
yes ) 

)
+ 

∑ 

i ∈ N yes 
Sh i 

(
N 

yes ∪ { f } , v q α,� ′ )
−

∑ 

i ∈ N yes 
Sh i 

(
N 

yes ∪ { f } , v q α,� 
)
. (8) 

Similarly to Proposition 2 , we can prove that ∑ 

i ∈ N yes 
Sh i 

(
N 

yes ∪ { f } , v q α,� ′ )
= 

∑ 

i ∈ N yes 

(
pq αi + c 

[
d ( i ) 

2 
− Sh i 

(
N 

yes ∪ { f } , v d � ′ 
)])

and 

∑ 

i ∈ N yes 
Sh i 

(
N 

yes ∪ { f } , v q α,� 
)

= 

∑ 

i ∈ N yes 

(
pq αi + c 

[
d ( i ) 

2 
− Sh i 

(
N 

yes ∪ { f } , v d � )])
. 

Thus, (8) coincides with 

c 
(
d � 

′ 
( N 

yes ) − d � ( N 
yes ) 

)
+ c 

∑ 

i ∈ N yes 

(
Sh i 

(
N 

yes ∪ { f } , v d � ) − Sh i 

(
N 

yes ∪ { f } , v d � ′ 
))

= c 
(
d � 

′ 
( N 

yes ) − d � ( N 
yes ) 

)
+ c 

(
v d � ( N 

yes ∪ { f } ) − Sh f 
(
N 

yes ∪ { f } , v d � )
−v d � 

′ 
( N 

yes ∪ { f } ) + Sh f 

(
N 

yes ∪ { f } , v d � ′ 
))

= c 

(
Sh f 

(
N 

yes ∪ { f } , v d � ′ 
)

− Sh f 
(
N 

yes ∪ { f } , v d � )). 

Because the Shapley value is an additive on the characteristic 

unction, 

 

(
Sh f 

(
N 

yes ∪ { f } , v d � ′ 
)

− Sh f 
(
N 

yes ∪ { f } , v d � ))
= c 

(
Sh f 

(
N 

yes ∪ { f } , v d � ′ − v d � 
))

. 

Notice that 

 
d � 

′ 
( S ) − v d � ( S ) = 

{
d � 

′ 
( N 

yes ) − d ( N 
yes ) if S = N 

yes ∪ { f } 
0 if S � = N 

yes ∪ { f } . 
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Thus, Sh f 

(
N 
yes ∪ { f } , v d � ′ − v d � 

)
≥ 0 . Hence, the firm does not 

mprove by deviating from the strategy of the statement at Stage 

. 

We now analyze the subgame given by Stage 1. Let i ∈ N. Play-

ng yes , vessel i yields Sh i 
(
N ∪ { f } , v q α )

. Suppose that vessel i plays 

o instead of yes. Then N 
no = { i } and N 

yes = N\ { i } . Thus, vessel i
ields pq α

i 
. By Proposition 1 , vessel i does not improve by deviat-

ng from the strategy of the statement at Stage 1. �

The non-cooperative game has more SP NE. In the next propo- 

ition, we prove that if vessels do not share their FADs, the firms 

eassign the FADs, minimizing the distance traveled, and vessels 

sh efficiently. Then we have a SP NE. 

roposition 5. The following combination of strategies is a SP NE : 

Stage 1. For each i ∈ N, a 1 
i 

= no. 

Stage 2. The firm selects � such that � ( b ) = α( b ) if b ∈ 

⋃ 

i ∈ N no B αi 
and d � ( N 

yes ) = d ( N 
yes ) . 

Stage 3. For each i ∈ N, each � is selected by the firm at Stage 2,

and each b ∈ B 
� 
i 
, q ( b ) = q ∗( b ) . 

The payoff allocation induced by the combination of strategies is 

v q α ( i ) 
)
i ∈ N∪{ f } , the vector of the individual values of the cooperative 

ame. 

roof. It is obvious that the payoff allocation induced by the com- 

ination of strategies is 
(
v q α ( i ) 

)
i ∈ N∪{ f } . 

Notice that the strategies of Stages 2 and 3 coincide with the 

nes of the statement of Proposition 4 . Thus, in the subgames of 

tages 2 and 3, we have a NE. 

We now analyze the subgame given by Stage 1. Let i ∈ N. Play-

ng no vessel i obtains pq α
i 
. Suppose that vessel i plays yes instead 

f no. Then N 
yes = { i } . Thus, vessel i obtains Sh i 

({ i, f } , v q α )
. Using 

rguments similar to those used in the proof of Proposition 2 , we 

an prove that 

h i 
({ i, f } , v q α) = pq αi + c 

[
d ( i ) 

2 
− Sh i 

({ i, f } , v d )]
= pq αi . 

Thus, vessel i does not improve by deviating from the strategy 

f the statement at Stage 1. �

Propositions 4 and 5 describe, for any tuna fishing vessels prob- 

em, two SP NEs of the non-cooperative game. Nevertheless, de- 

ending on the position of the FADs and initial assignment α, 

ome tuna fishing vessel problems could have more SP NEs . 

In the next proposition, we give two properties of the SP NE de- 

cribed in Proposition 4 , that make this SP NE more appealing. 

roposition 6. 

a) Each agent obtains under the SP NE of Proposition 4 at least the 

same as that under the SP NE of Proposition 5 . 

b) Suppose that at Stage 3, all vessels fish efficiently in their assigned 

FADs. Then, in any SP NE the firm select �, minimizing the dis- 

tances. Besides, in any SP NE, for each vessel to play yes is at least

as good as it is to play no. 

roof. 

a) It is a consequence of Proposition 1 

b) Using arguments similar to those used in the proof of 

Proposition 4 we can prove that in any SP NE, the firm selects 

�, minimizing the distances. 

Let 
(
a 1 
i 

)
i ∈ N be the action of vessels in Stage 1 in some SP NEs . 

uppose now that vessel j is playing no and decides to play yes . 
313 
ormally, let 
(
a ′ 1 
i 

)
i ∈ N and j ∈ N be such that a 1 

j 
= no, a ′ 1 

j 
= yes and

 
1 
i 

= a ′ 1 
i 

for each i ∈ N\ j. Then, 
 
′ yes = 

{
i ∈ N : a ′ 1 i = yes 

}
= N 

yes ∪ { j} and 
N 

′ no = 

{
i ∈ N : a 1 i = no 

}
= N 

no \{ j} . 
We should prove that vessel j playing yes yields at least the 

ame result that playing no does. By playing no, vessel j yields pq α
j 
. 

y playing yes , vessel j yields Sh j 
(
N 

′ yes ∪ f, v q α,� 
)
. Similarly to the 

roof of Proposition 4 , we can prove that 

h j 
(
N 

′ yes ∪ f, v q α,� 
)

≥ pq αj . 

�

A SP NE predicts the behavior of rational agents. When there is a 

nique SP NE, we can predict how rational agents will behave. Nev- 

rtheless, when there are several SP NEs , we should compare all of 

hem. Proposition 6 present two properties of the SP NE described 

n Proposition 4 that make it more appealing. 

Part ( a ) says that all vessels and the firm obtain at least the 

ame results under the SP NE of Proposition 4 and the SP NE of 

roposition 5 . Thus, it should be relatively easily to coordinate all 

gents to play the SP NE given by Proposition. For instance, the firm 

ould say to the vessels that if all play yes at Stage 1, then the rev-

nues will be at least the same as that generated when playing no. 

Part ( b ) says that if all vessels fish efficiently at Stage 3, and 

f vessels play rationally, they should choose yes at Stage 1. Notice 

hat when choosing yes , every vessel obtains at least the same re- 

ult as that associated with choosing no. 

Let us discuss the incentives for fishing efficiently at Stage 3. 

ach vessel should fish in two types of FADs: the ones assigned 

nitially to the vessel and the ones assigned initially to other ves- 

els but reassigned at Stage 2 to this vessel. In the FADs assigned 

nitially, each vessel has incentives to fish efficiently. Otherwise, at 

tage 4, the amount received by the vessel would be smaller. In the 

ase of reassigned FADs, things are different. The amount received 

y the vessel at Stage 4 does not depend on the amount recovered 

n those FADs. Thus, fishing efficiently produces the same alloca- 

ion than fishing not efficiently. We think this aspect is a short- 

oming from a theoretical point of view. Nevertheless, we think 

hat in most of the practical cases, this is not the case. Usually, the 

umber of vessels is small (two or three). They face the same sit- 

ation (with the same vessels and the same firm) for several sea- 

ons. This means that if a vessel does not fish efficiently, it will be 

iscovered and could be removed from the fishing group. Thus, we 

hink that the assumption made in part ( b ) is quite realistic from 

 practical point of view. 

. Data and results 

In this section, we design an experiment that, using real FAD 

ovement data from different tuna fishing firms, empirically eval- 

ates the theoretical propositions described in the previous sec- 

ion. All of this allows us to support the proposed solution through 

he Shapley value, a much more equitable technique than others 

sed (e.g., Bayesian Nash equilibria) to model this type of situation. 

ne of the main problems in cooperative game theory is how to 

istribute the total revenue among all players (in this case, the ves- 

els and the firm) equally, but taking into account the contribution 

f each player. With this idea in mind, we calculate the revenues 

in dollars) earned by the vessels and the firm in three scenarios: 

i) no FAD sharing, (ii) FAD sharing, and (iii) FAD sharing follow- 

ng the Shapley value. The data sample, provided by Marine Instru- 

ents for scientific purposes only, is composed of anonymized real 

ata from three tuna vessels fishing in the eastern Indian Ocean 
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Fig. 2. FAO area no. 51 (in red) and the data area of our sample (in green). (For interpretation of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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Table 3 

Experiment assumptions. 

Description Value 

Number of vessels 3 

FADs per vessel 20 

Vessel speed 15 knots 

Fishing time 3 hours 

Cost per ton $1400 

Fuel cost per mile $29 

Skipper benefit 10% 

Tons beneath each standard FAD 6 

Tons beneath each premium FAD 8 

s

o

f

e

i

o

F  

a

t

f

a

F

i

o

t

o

t

t

rom April 9 to 23, 2017 in FAO (Food and Agriculture Organization 

f the United Nations) catch area no. 51 (red rectangle in Fig. 2 ). 

It is worth highlighting three key issues concerning the choice 

f the sample, the study period, and the dates chosen. Regarding 

he sample, our data come from a tuna fishing firm composed of 

hree vessels (i.e., three skippers) with 20 FADs per vessel. The de- 

ision to use three vessels has a double objective. First, this type 

f grouping is one of the most common ways of working with 

una vessels ( Groba et al., 2020 ). Second, it was the simplest, and

ost parsimonious, way to approach our objective and test the 

hree proposed propositions. As for the study period, we consid- 

red one month of study because it is a common fishing period 

or this type of vessel and technique ( Groba et al., 2015; 2018 ). Fi-

ally, although the time of year is important in the case of free 

shing, there are no differences in the case of FAD use that are rel-

vant from a seasonal point of view ( Fonteneau, Chassot, & Bodin, 

013; Maufroy et al., 2016 ). Thus, this randomly collected informa- 

ion was recorded using Marine Instruments MSB software, a FAD 

ata reception and visualization platform developed by Marine In- 

truments. In addition, a number of simplifications were taken into 

ccount based on Marine Instrument’s historical records for vessels 

orking in this area ( Table 3 ). 

To highlight some of the most salient ones, (i) we assume that 

una vessels sail at 15 knots with an average cost of $29/nauti- 

al mile, and (ii) the skipper knows the number of FADs to which 

e/she has been assigned (initial assignment) but cannot know in 

dvance the final assignment, nor the amount of tuna available in 

ach FAD. Following authors such as Groba et al. (2020) , we con- 

ider that the average expected amount of tuna from each FAD is 

pproximately six tons. Furthermore, for a correct interpretation of 

he results -although this value may be slightly different from one 

rm to another- we have assumed an average profit for skippers of 

0% of the total amount of tuna caught ( Groba et al., 2020 ). For the
314 
ake of simplicity, we have not paid attention to other fixed costs 

f the firm, such as crew costs, supplies, fishing licenses, and so 

orth. 

Although more sophisticated techniques exist, we use the near- 

st neighbor (NN) strategy to retrieve FADs during the simulations 

n our experiments ( Fig. 3 ). This implies that the final distribution 

f the FADs was based on the efficient assignment of the nearest 

ADs. The choice of this method is based on the fact that it is a fast

nd robust assignment method, commonly used by the tuna indus- 

ry today and perfectly valid to test our theoretical assumptions. In 

act, in the case of using a more efficient recovery strategy, for ex- 

mple, one that takes into account the dynamic nature of drifting 

ADs, this would imply better results and, therefore, higher prof- 

ts even for the firm (and therefore for each skipper) due to the 

ptimization of the FAD collection route ( Groba et al., 2020 ). 

Table 4 summarizes the real case we have analyzed, in which 

he 60 FADs owned by three tuna vessels (initial allocation) are 

ptimally shared and reallocated (final allocation) to minimize the 

otal distance traveled together. This reallocation of FADs implies 

hat sometimes a vessel is reassigned 20 FADs (the same amount 
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Fig. 3. Example of collecting FADs with NN strategy with 3 vessels. 
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t had initially), but at other times, it receives more or fewer FADs 

han it had initially. This is represented graphically with different 

olors in the columns of Vessel 1, Vessel 2, and Vessel 3. 

Knowing both situations, the distance traveled by each vessel 

s calculated (initial distance), as well as the total distance trav- 

led by the three vessels (initial total distance). In parallel, the MSB 

oftware calculates the total distance traveled as a whole thanks to 

he optimal reallocation (optimal sharing in Table 4 ), in this case 

139 nm. With these data, and taking into account the expected 

ons per FAD as well as the tuna and fuel costs per mile ( Table 3 ),

e calculate the revenue for each vessel and the firm. 

In addition, assuming an expected average quantity of six tons 

er FAD and taking into account the distances saved, along with 

he redistribution of the FADs ( Table 4 ), we can empirically val- 

date the Shapley value for revenue sharing between the players 

i.e., the vessels and the firm). Moreover, to show the best behavior 

f the Shapley value, that is its higher fairness taking into account 

he contribution of each player, we compare it with the results 

f Groba et al. (2020) , who used non-cooperative mechanisms of 

AD reallocation based on Bayesian Nash equilibria ( Table 5 ). First, 

e calculated vessel and firm revenues (in dollars) when FADs are 

ot shared ( Table 5 - Revenues without cooperation). Second, we 

se Groba et al. (2020) ’s results as an example of a mechanism 

hat incentivizes vessels to share FADs. In their research, they used 

ayesian Nash equilibria of the non-cooperative game to guarantee 

ach vessel at least the same revenue as in the case of not shar-

ng their FADs. We calculate the revenue given by this mechanism, 

he total improvement, and the cooperative improvement (with re- 

pect to non-sharing) to compare them with our proposal. Finally, 

e do the same, but we consider the Shapley value. 

As we have argued in the theoretical model, all agents (i.e., 

una vessels and firm) obtain more revenue by cooperating ac- 

ording to the Shapley value. Through cooperation, each vessel ob- 

ains an extra revenue of approximately $19,0 0 0 on average, and 

he firm gains extra revenue totaling approximately $34,0 0 0. Com- 

aring the final distances and amounts with the initial ones (as 
315
hown in Table 6 ), it can already be seen that the vessels and the

rm gain significant benefits, reaching improvements of more than 

00% for the vessels and 14% for the firm. This is due to the fuel

aved through the intelligent reallocation of FADs. 

Therefore, our empirical results corroborate the findings 

eached by authors such as Groba et al. (2020) , but our work 

emonstrates how the Shapley value is a more equitable method 

or two reasons. On the one hand, although the firm loses a part 

f its improvement (21 points, from 35% to 14%) with respect to 

he Groba et al. (2020) mechanism, the improvement for tuna ves- 

els is much higher (about 100 points more) for all vessels. On the 

ther hand, with the Shapley value, no vessel loses the opportu- 

ity to improve its income. Although it is true that some vessels 

ay have higher profits than others do based on the reallocated 

ADs (e.g., Vessel 1 at 109% versus Vessel 2 at 117%), the tension 

hat this situation may generate is not at all comparable to other 

haring methods such as that in Groba et al. (2020) , where some 

essels may not benefit from sharing. This may be a key factor for 

una vessel owners to implement this type of solution once and 

or all, something that is not happening so far despite the fact that 

hese methods are already known in the sector. 

To avoid supporting our results on a single experiment, we per- 

orm 10 simulations varying the positions of the FADs and the ini- 

ial position of the vessels. The rest of the parameters are given 

y Table 3 , in which we assume standard FADs (six tons). As in

he previous case, we calculate (a) the total improvement by coop- 

ration in each experiment ( Table 6 part [a]) and the percentage 

mprovement by cooperation ( Table 6 part [b]). As before, the data 

re from three tuna vessels in the eastern Indian Ocean, specifically 

n FAO catch area no. 51 ( Fig. 2 ). As can be seen, the results do not

iffer significantly from the particular case analyzed. All vessels in- 

rease their incomes by approximately $19,0 0 0, which is an im- 

rovement of more than 100% compared with the no-sharing situ- 

tion. Moreover, the average of the experiments describes a 13.3% 

mprovement in the owner firm’s revenue (previously 14%). There- 

ore, the replication of the cases not only validates the results in 
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Table 4 

Example of the calculations performed in each experiment. 

Table 5 

Revenue ($) comparison among no sharing, sharing, and sharing using the Shapley value. 

316 
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Table 6 

a) Total improvement by cooperation, and b) Percentage improvement by cooperation. 

Table 7 

Revenue ($) comparison sharing “PREMIUM” FADs with Shapley value. 
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able 5 but also confirms the theoretical results presented in the 

revious section. 

Finally, in addition to assessing the final number of FADs, ac- 

ording to the theoretical propositions, it must be taken into ac- 

ount that the contribution of each vessel may be different and 

s determined by the quality of the FADs shared (i.e., through the 

ons of tuna they manage to attract). Depending on each skipper’s 

xpertise, certain FADs may be better localized (“harvested” in the 

argon) due to various factors, such as oceanographic currents, wa- 

er temperature, surface currents, and so forth. Thus, the amount 

f tuna caught may be substantially different. To take this into ac- 

ount and avoid further complexities, we have considered two pos- 

ible situations: the standard FADs, where the expected amount of 

una is six tons on average, and the premium FADs (better “har- 

ested”) where the expected amount of tuna is eight tons on aver- 

ge. Our analysis could easily be extended to the general case, in 

hich FADs could have different tons beyond these two simplifica- 

ions. According to Proposition 2 , the cooperation revenue of each 

essel and the firm can be divided into two parts. One part de- 

ends on the amount of tuna: for the vessels from their own FADs 

nd for the firm from the total FADs of all its vessels. The other 

art depends on the distances traveled and, thus, on the savings 

enerated after reassignment of FADs. Assuming that, in the ana- 

yzed experiment ( Table 4 ), all the FADs of Vessel 1 are now Pre-

ium (instead of Standard) and that all other parameters remain 

he same, we compare (using Proposition 2 ) the revenues of all 

gents ( Table 7 ). 

Comparing the results of this table with those of Table 4 (only 

he last part, the Shapley section), we can observe the following 

onclusions. First, Vessels 2 and 3 are not affected at all. Second, as 

he second part (distances) does not change, Vessel 1’s revenue in- 

reases by $5600 because the amount of tuna in its FADs is higher, 

nd the firm’s revenue increases. Thus, the total improvement of 

essel 1 and the firm is maintained, but the percentage improve- 

ent, with respect to the total, has decreased. 

The qualitative conclusions of the analysis could be extended, 

hrough Proposition 2 , to the general case. Suppose that, in a tuna 
317 
essel problem, the FADs of some vessels are premium, and the 

ADs of other vessels are standard. Thus, the vessels’ revenues with 

remium FADs and those of the firm would increase (relative to 

he case where all FADs are standard), and the revenues of the 

essels with standard FADs would remain the same. We believe 

hat this monotonicity of Shapley value revenues in this context is 

n important property. As we have argued previously, in general 

ooperative games, it could be the case that the improved perfor- 

ance of some agent produces a negative externality on the rest of 

he players. On the other hand, these results help with the imple- 

entation of this type of solution in the industry because team- 

ork is rewarded. Those who best sow their FADs are rewarded, 

o this type of initiative, in addition to being beneficial for all en- 

repreneurs, should be promoted by firms, as it “brings out the 

est in each agent” resulting in greater benefits for all. 

. Concluding remarks 

In this research, we have considered the problem of tuna ves- 

els and the possibility of cooperation among them to maximize 

heir own and the owner firm’s profits. The firm bears the over- 

ead costs (for which fuel oil is by far the main one), and the ves-

els’ skippers keep a portion of the catches, hence the possible mu- 

ual interest to cooperate. When FADs are shared among vessels, 

uel consumption is reduced, which generates additional revenue. 

ur goal is to propose a fair way of sharing the total revenue be- 

ween the vessels and the firm that also incentivizes this type of 

nitiative. 

With this idea in mind, we have modeled the tuna vessels prob- 

em as a cooperative game, studying the Shapley value. The theo- 

etical analysis has allowed us to find three theoretical results with 

he Shapley value. First, the Shapley value provides each agent (the 

essels and the firm) with at least the same revenue as when the 

gents do not cooperate. Second, we have decomposed the Shap- 

ey value into two subparts. On the one hand, a part depends ex- 

lusively on the tuna catches (for each vessel, its FADs, and for the 

rm, the FADs of all of its vessels), and another depends on the 
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uel savings due to the decrease in the distance traveled. Third, we 

ave found that, when there are two vessels, the additional rev- 

nue generated by the cooperation is divided equally among the 

hree agents (the two vessels and the firm). 

From an empirical point of view, we have calculated the Shap- 

ey value for several real-life examples. The conclusions obtained 

s a result of the empirical analysis show that the Shapley value 

roposes a fairer way of distributing the generated revenues, as 

t takes into account what each player actually contributes. Our 

esults not only corroborate the conclusions reached by authors 

uch as Groba et al. (2020) but also demonstrate how the Shap- 

ey value is a more equitable distribution method for cooperative 

ames. 

The results also show a clear improvement for all parties, start- 

ng with the vessels, the firm, and the environment. The new FAD 

haring strategy, in addition to showing the best economic results, 

educes emissions into the atmosphere, making the tuna fishing 

ndustry more sustainable. It is important to note that, for a given 

peed, the distances saved are equivalent to the fuel savings. As 

tated by Groba et al. (2015) , this is important not only to reduce

osts but also to increase potential storage space. Therefore, we 

ould conclude that the proposed solution allows fishing vessels, 

nd any other agent that travels to moving targets in the short 

erm, to minimize the distance traveled, which would have a di- 

ect impact on variables such as the time spent, fuel consumption, 

r CO 2 emissions into the atmosphere. 

We recognize that other analyses could be conducted in this 

etting. For example, we can study the game theoretic properties 

f the cooperative game, such as convexity or balance. Instead of 

he Shapley value, we can consider other cooperative values, such 

s the nucleolus or the τ -value. These possibilities open future av- 
nues of research. 
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