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Abstract
Convolutional neural networks have pushed forward image analysis research and computer vision over the last decade,

constituting a state-of-the-art approach in object detection today. The design of increasingly deeper and wider architectures

has made it possible to achieve unprecedented levels of detection accuracy, albeit at the cost of both a dramatic com-

putational burden and a large memory footprint. In such a context, cloud systems have become a mainstream technological

solution due to their tremendous scalability, providing researchers and practitioners with virtually unlimited resources.

However, these resources are typically made available as remote services, requiring communication over the network to be

accessed, thus compromising the speed of response, availability, and security of the implemented solution. In view of these

limitations, the on-device paradigm has emerged as a recent yet widely explored alternative, pursuing more compact and

efficient networks to ultimately enable the execution of the derived models directly on resource-constrained client devices.

This study provides an up-to-date review of the more relevant scientific research carried out in this vein, circumscribed to

the object detection problem. In particular, the paper contributes to the field with a comprehensive architectural overview

of both the existing lightweight object detection frameworks targeted to mobile and embedded devices, and the underlying

convolutional neural networks that make up their internal structure. More specifically, it addresses the main structural-level

strategies used for conceiving the various components of a detection pipeline (i.e., backbone, neck, and head), as well as

the most salient techniques proposed for adapting such structures and the resulting architectures to more austere

deployment environments. Finally, the study concludes with a discussion of the specific challenges and next steps to be

taken to move toward a more convenient accuracy–speed trade-off.

Keywords Convolutional neural networks � Object detection � On-device machine learning � Efficient architectures

1 Introduction

Despite being widely studied over the last three decades,

object detection still represents a highly complex problem

and remains an uphill challenge of great interest in

research. Nowadays, classification and localization of

specific targets or object instances on images and videos

transcend computer vision and constitute both a central

research topic within the scientific community, and a

technical approach is increasingly explored and exploited

by industry. It is possible to find a fair amount of related

works in the existing literature on application domains as

diverse as posture estimation [1], pedestrian [2], and face

detection [3], or human behavior recognition and analysis

[4], among others. Moreover, outside academia, the recent

adoption of cutting-edge object detection methods and
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techniques has enabled professionals in the corporate field

to improve the efficiency and effectiveness of robots and

cyber-physical systems in general, due to a more sophis-

ticated perception of the environment. It has also had a

very significant impact on a considerable number of prac-

tical use cases closer to the general public, and primarily

associated with mobile applications and real-time support

as well as monitoring systems such as advanced driving

assistance systems (ADAS) [5] or drone surveillance sys-

tems [6].

Although first presented in 1989 by LeCun et al. [7],

convolutional neural networks (CNNs) have emerged over

the last decade as a major driver of progress in image

analysis and computer vision, delivering state-of-the-art

results in terms of accuracy. Though statistical classifiers,

such as support vector machines (SVM) [8], Random

Forest [9], Adaboost [10], or traditional neural networks,

were considered the standard in computer vision for many

years and had a leading role in object detection tasks, and

the relatively recent breakthrough of deep learning (DL)

techniques represents an unquestionable leap over previous

object detection research, enabling not only the detection

of objects in more complex situations but also the simpli-

fication of the design process of pursued algorithmic

solutions. In this regard, there has been a clear paradigm

transition from a handcrafted approach for the conception

and design of detection techniques with a strong focus on

feature engineering to a streamlined model based on fully

automatic feature extraction. Thus today, CNNs represent a

comprehensive detection solution that, due to their ability

to exploit both spatial and temporal correlation of input

data, enables feature representation learning to be carried

out directly with no need of domain expertise, an essential

requirement to design feature extraction algorithms such as

shift invariant feature transform (SIFT) [11], histogram of

oriented gradients (HOG) [12], or local binary patterns

(LBP) [13], which are omnipresent among the more clas-

sical approaches.

The aforementioned qualitative leap forward brought by

the advent of CNNs in computer vision [14] did not come

without cost. As has been the case with essentially all DL

techniques, convolution-based networks are also excep-

tionally computationally demanding and require a large

memory footprint. The exploration of innovative vision

approaches in general and the design of novel CNN

architectures in particular, promoted by challenges such as

the Imagenet Large Scale Visual Recognition Challenge

(ILSVRC) [15] and Pascal VOC [16], have been primarily

aimed at achieving better performance in visual recognition

tasks, concentrating efforts on outperforming the latest

state-of-the-art accuracy. This has meant a tremendous

boost for the field and a historically unprecedented evolu-

tion of CNN. On the other hand, it has also led to

increasingly complex architectures. CNN models such as

VGG-16 (138M parameters) [17] or RetinaNet (built on

ResNet-152 [18], with 60M parameters) [19] have been

able to achieve high accuracy levels, but they typically rely

on complex structures and work with multidimensional

parameter spaces, resulting in a large amount of computed

intermediate products and output values. The path toward

more accurate CNNs has also involved, throughout much

of the last decade, the design of progressively deeper

architectures and hence an ever-greater number of feature

maps, resulting not only in a dramatic increase in the

number of parameters, as just noted, but also in the number

of multiply-adds (MAdd) operations [17, 20].

However, recent hardware progress has shown adequate

power to successfully meet the above-mentioned needs.

Cloud-infrastructure-based configurations powered by

graphics processing units (GPUs) clusters have become the

standard in DL research. Conceived as highly scalable

systems with access to potentially unlimited resources, they

can accelerate both CNN inference and training on dedi-

cated servers, fully or partially taking on the required

computational load and thus relegating user-level devices

to mere data-entry and result-presentation terminals

[21, 22]. Nevertheless, this model presents certain limita-

tions in terms of response speed, availability, and security

[23–31], which is why it might be inadequate in scenarios

where system response time must be as short as possible, in

austere contexts with limited communication or computa-

tional resources, or even in cases where data privacy is a

hard requirement. More specifically:

• Increase in latency, i.e., the response time of the system,

does not harm detection accuracy, but it can lead to

significant degradation of the experience [24]. Offload-

ing processing tasks to a remote machine adds to

inference time—that is, trained model execution time—

the amount of time devoted to image encoding and

transfer, consequently generating the perception among

end-users of higher slowness in the whole process

[23, 25, 28].

• Connectivity between a terminal device and the server-

side is crucial. A decent number of today’s applications

and cyber-physical systems, the latter designed as

distributed infrastructures and oriented to mobility

contexts, are based on terminal devices that strongly

rely on wireless communications. While providing

ubiquity to detection solutions, this type of connection

is less robust than wired alternatives [27]. Thus,

depending on factors such as the reception signal

strength, the environmental conditions, or the location

of the device itself, among others, the connection can

experience substantial speed fluctuations or, in the
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worst case, connection drops, hindering and interrupt-

ing computations offloading on the cloud [30].

• Client–server data exchange inherently involves secu-

rity and user data privacy concerns [26, 31], both in

data transmission, which can be affected by illicit

captures, and data persistence on the cloud infrastruc-

ture, a potential open gate to unauthorized access.

In recent years a novel DL trend named On-Device

Machine Learning has emerged as an alternative to the

cloud approach, constituting a potential solution to the

different problems just pointed out. This trend can be

framed, from a technological perspective, within the so-

called edge computing paradigm, and encompasses a whole

new set of techniques and technologies that enable DL

solutions to be deployed on low-power, energy-constrained

terminal devices. Although we include both next-genera-

tion mobile and embedded devices in the latter, for brevity,

we will refer to them jointly as edge devices throughout the

paper, following [32]. Inference is offloaded on the ter-

minal device, alleviating the computational load on the

server-side, the data traffic between endpoints and the

associated latency, but also incorporating to terminal

devices a layer of intelligence capable of providing users

with a smoother and better-tailored experience, without

compromising data integrity. This demand for higher per-

formance in models deployed on edge devices is reflected

in the need of more sophisticated hardware systems and

more complex CNN models.

Deep neural network (DNN) acceleration hardware such

as application-specific integrated circuits (ASICs) [33, 34],

GPUs [35, 36], and field programmable gate arrays

(FPGAs) [37–40] are already part of the technological

landscape of mobile and embedded devices and have pro-

ven to considerably speed up mathematical computations

in the latter while providing a good balance with respect to

their intrinsic power consumption constraints. However,

the performance achieved in most cases is still insufficient

and far from the pursued real-time, revealing the need for

an alternative approach focused on the software side.

Previous studies carried out along these lines have focused

on the possibility of bringing artificial intelligence closer to

devices with limited resources. Those works explore a

possible decrease in both the inference time and memory

size of DNN models, not only through better exploitation

of device hardware capabilities but also, and mainly,

through the design of more compact and efficient models

despite the limitations. With specific regard to this last

point, there has been a very prolific scientific production

during the last 5 years that has resulted in a great diversity

of reported approaches. Those approaches can be classified

into two distinct categories:

• CNN compression Mainstream practice focused on the

optimization and size decrease in an existing network

by removing potential redundancy in model parameters.

This approach comprises widely known model com-

pression methods such as data quantization [41, 42],

network sparsification [43, 44], network pruning [45]

and knowledge distillation [46].

• Lightweight CNN design Relatively more recent

approach [47] that, as the name itself suggests, pursues

the creation of new efficient architectures from the

ground up [48–52], based on novel less costly convo-

lution operation types including: (i) methods that

operate at the filter channel level and can reduce the

number of parameters, such as group convolutions

[50, 53–55] and depth-wise separable convolutions

[47, 48], and (ii) techniques that act on the spatial

dimension of filters to improve parameter efficiency,

such as low-rank filters.

Moreover, due to the remarkable ongoing scientific efforts,

it is already possible to find a fair number of surveys in the

computer literature aimed at introducing, analyzing, and

comparing the more relevant related research, in order to

shed light and put into perspective the extraordinary

amount of recently published contributions. We identify

studies published over the last 4 years (2017–2020) from

different levels of abstraction, explore the use of machine

learning techniques on terminal devices [32, 38, 56–58],

and also publications explicitly circumscribed to the

detection problem, that comprehensively review the most

salient issues concerning the current state-of-the-art

[59–65]. More specifically, in the first group, we can find

summary-oriented works that provide an overview of

recent progress in DNN acceleration focused on both

(i) effective methods for network compression and opti-

mization tasks and (ii) the different hardware solutions and

software frameworks jointly conceived for that purpose.

The second group brings together, as pointed out, publi-

cations that review the most significant recent DL-based

efforts—more specifically, based on CNN—in object

detection, introducing and analyzing the detection algo-

rithms and frameworks that have emerged as milestones in

the search for higher accuracy, and also covering topics

such as (i) underlying architectures [61, 63] (ii) topology-

specific innovations for increasing the representational

capacity of CNNs [64], (iii) challenges still pending in the

field [60, 63], (iv) methodologies and strategies best suited

for training [60, 63] (v) common use cases or application

domains [61], and (vi) evaluation metrics [60, 63].

Although the referenced works address a broad spec-

trum of relevant topics regarding both the search toward

more efficient DL techniques and the design of more

accurate detection solutions, there is still no work of this
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nature in the literature providing a detailed overview of

recent object-detection-oriented compact CNN architec-

tures that, beyond simply pursuing higher accuracy, have

been conceived from scratch within the on-de-

vice paradigm and aim to bring the detection process closer

to resource-limited hardware platforms. This paper pro-

vides a comprehensive review of the foremost lightweight

CNN architectures specifically designed for generating

efficient models, directly deployable on edge devices and

characterized by a proper speed-accuracy balance and

contained energy consumption on inference time. More

specifically, the main objective of this work is to provide

the reader with a structured and detailed presentation of the

main approaches and techniques developed in that line, as

well as the primary features and more significant design

decisions that have guided the conception of such light-

weight architectures. The aim is to provide machine

learning professionals interested in developing specific

detection-based applications for edge devices, an overview

to be used as a starting point or help guide; and to delve

into the techniques and structural principles underlying the

most popular current compact CNN architectures, in order

to create a solid foundation, among researchers and in

academics, necessary for a steady progress toward true

real-time performance.

In particular, the review focuses on object detection

frameworks that, conceived as convolutional neural net-

works (CNNs), have been designed from scratch according

to the on-device paradigm. In the literature, it is possible to

find alternative approaches such as Transformers [66] and

Multi-layer Perceptron [67] that tackle the object detection

problem as well and have proven to yield high performance

in this regard. However, to the best of the authors’

knowledge, such approaches are very recent, and they have

not yet found their way into the on-device corpus. For this

reason, the study remains limited to detectors built on CNN

architectures. The on-device paradigm itself and its rela-

tively short lifetime represent highly restrictive filtering

considerations in the source discovery process and have

shaped the keyword list used to find related articles and the

inclusion/exclusion criteria adopted for determining the

eligibility or degree of interest of such works. As far as the

keywords are concerned, they were carefully selected

according to the research objectives, seeking to obtain

eminently relevant papers while ensuring none of them

were left out of the search results. Specifically, for the

various queries made, the term ‘‘object detection’’ was used

together with the following keywords: ‘‘on-device machine

learning’’, ‘‘embedded machine learning’’, ‘‘on-device

intelligence’’, ‘‘on-device AI’’, ‘‘TinyML’’, ‘‘resource-

constrained machine learning’’, ‘‘edge AI’’, ‘‘mobile

machine learning’’, ‘‘embedded AI’’, ‘‘compact neural

network’’, ‘‘portable neural network’’, ‘‘energy-efficient

deep learning’’. The list of results initially obtained was

further refined, excluding works based on the application of

compression techniques to existing models rather than on

the design of compact and efficient architectures deploy-

able on low-resource devices, and also omitting contribu-

tions outside the scope of interest either because the

approach proposed fell outside the on-device paradigm

(lack of experimentation or results reported in that direc-

tion), or because of the nature of the data handled (3D point

clouds [68, 69], and RGB-D images [70, 71]). Lastly, after

an in-depth reading, 37 papers were selected and finally

used as the core of this study.

The rest of the paper is structured as follows. Section 2

provides context to the study carried out, briefly presenting

some of the most relevant milestones in the recent evolu-

tion experienced by CNN-based object detectors, charac-

terizing the different components that integrate the

underlying architecture of those systems and thus estab-

lishing the theoretical foundations necessary for a better

understanding of the rest of the document. Section 3 pro-

vides a comprehensive analysis of the architecture of the

different lightweight detection frameworks present in the

literature, with special emphasis on the review of ultra-

compact CNN networks due to their particular relevance as

the backbone of detectors. Finally, Sect. 4 summarizes the

observations drawn from state-of-the-art and identifies

research challenges to be addressed in future work.

2 Toward efficient CNN-based object
detection

The design of more efficient and effective detection

frameworks has become one of the main objectives pur-

sued in object detection over the last 5 years. Computa-

tional cost reduction in traditional detectors and accuracy

preservation have guided the search for solutions carried

out in recent years by the community of computer vision

experts, scientists, and other professionals. This has led to

the development of several techniques and methods based

on CNN—for instance, Single Shot MultiBox Detector

(SSD) [72], You Only Look Once (YOLO) [73–77], Faster

R-CNN [78], Deeply Supervised Object Detectors (DSOD)

[79], RetinaNet, RefineDet [80], or CornerNet [81]—which

have shown promising performance in image-based target

localization and classification tasks.

In this regard, two-stage detectors have maintained a

leading role in the object detection application domain

almost since R-CNN was first presented in 2014 [82], in

large part due to the remarkable results provided by

frameworks such as Faster R-CNN. More specifically, the

integration of a Region Proposal Network (RPN) [78],

responsible for generating Region of Interest (RoI)
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proposals in the inner configuration of detectors, has made

it possible to reach a very high level of accuracy. However,

despite multiple efforts to increase detection speed, such as

Light-Head R-CNN [83], by simplifying or reducing RoI

computation and thus lightening the detection head, region

proposal generation has been an insurmountable bottleneck

for obtaining less computationally expensive models. For

this reason, many authors interested in the search for more

efficient solutions have turned their work toward the

exploration of unified detection strategies instead of

intensifying efforts and further deepening the optimization

of the different components that assemble region-based

pipelines.

This unified or single-stage approach gives its name to a

set of techniques that model object detection as a simple

regression problem, bringing together, in a single step, the

prediction of both the areas of potential interest in the form

of bounding boxes (localization) and the class names of the

different searched objects (classification). Adopting such a

simpler and more efficient localization mechanism has led

to a transition to a more structurally reduced overall

pipeline configuration, resulting in a less bulky architec-

ture, conceived as a single feedforward neural network

capable of clearly surpassing the inference speed offered

by two-stage detectors, albeit at the cost of a substantial

accuracy reduction. Despite this negative impact, archi-

tectures such as SSD [72] and the original version of

YOLO [84], both leading exponents of this paradigm,

represent a recent milestone of particular relevance as far

as macroarchitectural design and detection pipeline sim-

plification is concerned, and have been enormously suc-

cessful at conquering much of the space of interest

occupied by two-stage frameworks until relatively recently.

The one-stage pipeline model has undoubtedly been a

major improvement in terms of efficiency, successfully

alleviating the complexity of previous state-of-the-art DL-

based detection alternatives. However, the structural opti-

mization carried out for this purpose has been relatively

conservative, and special care has been taken to avoid

harming the accuracy of the resulting frameworks. Thus,

despite effectively reducing the latency associated with the

detection process, the unified pipeline represents an evo-

lution of detectors still unsatisfactory for deploying this

type of system in low-power target devices due to the

significant computational complexity and large size of the

derived model. As shown by the analysis carried out in

Sect. 3, this approach constitutes the primary reference or

base on which modern lightweight object detection archi-

tectures are built.

To that end, it is necessary to strengthen efforts to move

toward a better speed-accuracy trade-off, exploring and

developing techniques able to soften the aforementioned

negative effect on the accuracy values derived from the use

of compact architectures, as well as approaches that make

progress in conceiving more expressive and thereby cap-

able detection-oriented networks. Furthermore, it will be

just as relevant as the nature or focus of the required

modifications to comprehensively approach the structural

optimization process, bearing in mind both the different

specificities of the object detection problem and the sin-

gularities of the three components that comprise the

detection frameworks.

Requirements of techniques designed ad hoc for

domain-specific vision applications, including object

detection, have traditionally received a treatment that could

be qualified as auxiliary, subject to the work and progress

made on general-purpose approaches. Although leveraging

and operating on CNN models have made it possible to

surpass the traditional performance of vision-based sys-

tems, due to their sophisticated ability to learn rich repre-

sentations from image data, those models are typically

algorithmic solutions based on vision-generic approaches

mainly aimed at improving accuracy and speed in classi-

fication tasks. Consequently, they might show significant

mismatches with respect to the needs derived from the

object detection process, in some cases even leading to

conflicts between the design principles underlying the

object detectors and those characterizing the more generic

classification-oriented networks.

Object detection relies particularly on the standard

CNN-based approach [82], built on the design principles

introduced by the seminal work of Lecun et al. in 1998

[85], such as the gradual decrease in the spatial dimensions

in feature maps as the network deepens, or the generation

of high-level features due to the feedforward communica-

tion of high-resolution convolutions located in shallow

layers of the network, with low-resolution convolutions

embedded in deeper areas. In turn, detection extends object

classification with several localization-specific challenges

such as scale variation or small object detection. Those

challenges, in general terms, require a higher degree of

expressiveness from the CNNs that define the inner struc-

ture of detectors almost entirely. Moreover, regarding

features, greater expressiveness also implies a demand for

multilevel feature processing, necessary for accurate visual

recognition, or the exploitation of high-level features with

better semantic quality to enrich low-level features.

Beyond an optimal trade-off able to successfully satisfy

the different needs derived from the duality of the object

detection problem, it will be equally necessary to explore

the structural and operational particularities of the three

elements that compose the architecture of the detection

framework: (i) the backbone, also called ‘‘base network’’ in

SSD [72], responsible for the extraction of semantic fea-

tures from the images supplied as input to the detector; (ii)

the neck, introduced in the architecture as an intermediate
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element intended for the refinement of the properties

extracted in the backbone, mainly through multilevel

properties fusion; and lastly, (iii) the head, responsible for

class prediction the bounding box regression. Figure 1

provides a schematic representation of the standard archi-

tecture of modern unified detection systems, depicting how

the three components are arranged together and indicating

which role they play in the detection pipeline. In addition,

for each of the components under consideration, details are

given on which properties of the resulting detector are

impacted the most by their configuration as well as which

aspects of the latter are more relevant.

As its name suggests, the backbone is the most relevant

element in the architecture of an object detection system,

mainly because of its predominance within the overall

structure of the system but also because of the impact that

some of its aspects or characteristics have on the overall

performance of the detector. The backbone’s ability to

extract representative properties and its expressiveness

contribute significantly to the general framework’s accu-

racy, while salient topology-specific features, such as net-

work depth or layer size in both the spatial and channel

dimensions, bound or set the requirements for the resulting

detection system in terms of computational cost and

memory space. Moreover, the backbone’s appeal as an

individually capable CNN network, able to perform clas-

sification tasks on its own, transcends object detection

domain, and constitutes a valuable approach for a fair

number of vision-based problems such as instance seg-

mentation or object tracking, among others. That is why,

traditionally, and still today, computer vision researchers

have commonly directed their efforts to the exploration and

design of new CNN architectural alternatives regardless of

the specific problem addressed. While the majority of these

alternative approaches have been conceived as generic

solutions, they are also used, nearly straightforwardly, as

techniques and methods to devise and improve detection

systems’ backbone.

With regard to the architecture, the neck is also a CNN

designed to expand or refine the features initially extracted

by the backbone in order to mitigate the mismatch or gap

in terms of power representation between the features

generated by the latter and those required to obtain an

adequate level of accuracy in object detection. Recent

approaches address this problem and explore the integra-

tion in detection frameworks of new building blocks or

multi-scale subnetworks, initially conceived in diverse

vision-related application domains such as human pose

estimation, face recognition, or instance segmentation, to

improve the network’s spatial awareness. More specifi-

cally, those new structural components are assembled into

the neck to obtain higher resolution and semantically richer

representations, not only to enable multi-scale object

detection but also to improve the detection—primarily

localization—of such objects in complex situations by

leveraging the use of feature maps with different scales and

the fusion of high and low-level features. Existing literature

includes a considerable number of works [72, 79, 86–88]

that address the problem described and propose different

methods of joint exploitation of multiple CNN layers to

improve detection accuracy. Among them, SSD [72] and

feature pyramid network (FPN) [86] probably stand out as

the two most paradigmatic approaches.

The very nature of CNNs and the gradual subsampling

performed across their layers as the network depth

increases produce a pyramid-shaped multiscale feature

map structure in which higher layers have both larger

receptive field size and higher semantic richness, while

Fig. 1 Standard architecture of modern one-stage object detection frameworks
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lower layers have a smaller receptive field size and,

therefore, higher resolution but lower semantic sensitivity.

SSD extends the base CNN network acting as backbone

within the detector’s architecture by appending a stack of

additional convolution layers of different scales, where

each layer is devoted to target-related predictions for a

particular scale, thus enabling multiscale detection. It has

shown relatively poor performance, however, in small

object detection. High-level feature maps with a large

receptive field are used to predict large targets; in contrast,

low-level feature maps have a small receptive field and are

able to predict small objects. The absence of a feature

fusion mechanism makes it impossible to take advantage of

the complementary nature of the features coming from

different layers, which decreases the semantic richness

necessary for small target detection.

FPN [86] is able to integrate semantic information in

multi-scale feature maps due to an architecture composed

of a bottom-up and a top-down path. In particular, the top-

down pathway is responsible for building higher resolution

feature maps from an initial semantically rich map. Newly

generated feature maps, though semantically strong, are not

appropriate for an accurate localization due to the negative

impact of both the upsampling and downsampling opera-

tions used in the process. For this reason, as a mechanism

to help with or improve localization, lateral connections are

then added between the reconstructed feature maps and the

corresponding original ones. However, although FPN has

proven to be an effective and straightforward option, layer-

by-layer feature fusion is not an optimal strategy and

penalizes network efficiency in situations where the num-

ber of feature maps to be fused is very high. Fortunately,

some design alternatives have emerged, intending to miti-

gate that deficiency by pursuing more efficient fusion

strategies. An example of those alternative approaches is

FSSD [89], which replaces FPN’s layer-by-layer fusion

with a single aggregation of the different multiscale feature

maps available initially based on a less costly concatena-

tion operation.

Finalizing the typical workflow in detection systems, the

features extracted by the backbone network and then

refined by the neck are passed as input to a series of pre-

diction layers in charge of classification and bounding box

regression tasks, both necessary for generating the output

of the detection process. Whereas components involved in

feature extraction have experienced a rapid evolution,

resulting from significant research efforts that have tradi-

tionally led to more accurate convolutional architectures

and, more recently, to more compact and efficient net-

works, quite the opposite has happened with the detection

head, which is still today relegated to a minor role in the

spotlight. That does not mean, however, that there has been

no progress. The transition to a more compact architectural

style, driven by the advent of single-stage detection mod-

els, has also been reflected in the organization and nature of

the prediction layers attached to the end of the detector.

Specifically, the head has been gradually slimmed down,

transitioning from a traditional structure [78] consisting of

two sibling branches, each with expensive fully connected

layers, to a lighter architecture consisting entirely of con-

volutional layers capable of jointly performing class esti-

mation and bounding box regression.

The enhancement of a single part within the detection

system is typically insufficient to boost the joint potential

of the three component assembly. A single-component-

focused search for new strategies or specific improvements

may lead to a result not necessarily appropriate [90]. For

this reason, an ill-fitted joint configuration of the backbone

and the detection head, for example, or even the typical

detector creation approach based on CNN designed for

classification tasks, may not be optimal for object detec-

tion. Aware of this, authors have commonly approached

the design process of new lightweight detection frame-

works comprehensively, exploring different approaches at

the structural and operational level in order to improve

performance and reduce the complexity of some, if not all,

of the architecture components, in compliance with the

well-known memory and computational limitations

imposed by edge hardware platforms. Pursued solutions go

beyond the sole adoption of a one-stage-detector

macroarchitecture as a starting point or the integration of a

shallower and simplified network model as the backbone in

the detection pipeline. They are built instead upon an in-

depth analysis exercise at both the micro and macroarchi-

tectural levels, diversifying efforts to tweak or fine-tune the

components in the detection system throughout a continu-

ous process of search for balance between latency and

accuracy.

3 Object detectors for resource-constrained
devices

This section provides a detailed review of the main mile-

stones or most representative approaches developed in

recent years to bring the process of object localization and

classification to devices with limited computational and

memory resources. We will start this review with a holistic

view of the main detection frameworks collected from the

related literature. In total, Table 1 lists thirty detectors

conceived as CNNs with small size (number of parameters)

and modest computational complexity (computational

volume). Specifically, for each detection framework ana-

lyzed, we will examine in detail the different techniques or

methods adopted at the architectural level for their con-

struction, not only pointing out which main building blocks
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or network architectures are chosen as the main constituent

elements for each of the different stages or components of

its structure, but also comprehensively analyzing which

specific topological adjustments or improvements were

applied to each of the parts to achieve the desired effi-

ciency-accuracy trade-off.

Given the relevance of the backbone as the detection

system’s key structural element, we will spend a large part

of the section studying the main architectural approaches

and design principles that have led to the development of

lightweight yet expressive CNNs appropriate for the

extraction of features with the quality required to effec-

tively perform bounding box regression and class predic-

tion, both of which are tasks involved in the detection

process. However, this review will not be limited to the

backbone networks listed in Table 1. Supported by a sec-

ond table (Table 2), we will extend the discussion of those

networks beyond the items presented in the first table,

analyzing the most relevant general-purpose CNN archi-

tectures designed from scratch for mobile or embedded

devices. Although, as we will see, most of them have not

been used so far as part of any detection framework, they

all represent perfectly valid approaches for this purpose.

Moreover, due to their convolutional nature, they are based

on structures and topological principles similar to those

comprising the foundation of detectors, so their incorpo-

ration into the analysis will complement the global dis-

cussion, providing further relevant information, both at the

micro and macroarchitectural level.

3.1 Lightweight object detection frameworks

The data collected in Table 1 provide context to the current

mobile scenario, chronologically locating recent research

efforts focused on studying and creating lightweight object

detectors in the last 5 years. In a first superficial inspection

of the works analyzed in the table, focusing exclusively on

the first three fields that provide more general data, it is

possible to identify certain aspects of interest that outline

the evolution of this new trend in the last few years.

Specifically, the increasing number of related papers pub-

lished (from only two in 2017, to fifteen in the last year and

a half) clearly highlights a significant growing interest in

the application of this new on-device paradigm to object

detection. Those numbers further confirm the massive

adoption of a single-stage pipeline configuration as the

predominant architectural model, with ThunderNet [91]

being the only two-stage detection framework of all the

lightweight detectors and base detection frameworks listed.

Maintaining the same level of abstraction, but extending

the analysis on Table 1 to the columns that contribute with

specific data regarding each of the components that com-

prise the architecture of the different detection systems

considered, we see that there is a marginal number of

papers, namely MAOD [92], CornerNet-Squeeze [93], and

LightDet [94], that explore the joint application of adjust-

ments on backbone, neck, and head. The remaining

majority is evenly split between work that explores

enhancements on two of the elements that form the

detection system in its different permutations [91, 95–106],

and approaches that choose to focus on just one component

[48, 107–117]. The main object of interest in the latter case

is the neck, and, to a lesser extent, the backbone. If we

delve deeper into this classification and extract the number

of studies per individual component examined, it is pos-

sible to establish a ranking or prioritization of the three

based on the level of attention they received in the different

studies considered. The resulting list, in decreasing order of

interest, is as follows: neck[ backbone[ head. There-

fore, it is clear both that the emphasis on the development

of specific approaches is aimed at improving the neck and

the relative absence of actions focused on the detection

head, whose structure, in general terms, is directly defined

by the detection framework used as base macroarchitec-

ture. The remainder of the section will include the main

contributions made in relation to the three components in

the last few years.

3.1.1 Neck-specific design considerations

We will now increase the level of detail of the analysis to

focus the discussion on Table 1, dealing with specific

architectural aspects of the different networks used as neck

within the several ultra-compact detectors studied.

3.1.1.1 Classification according to the multiscale-detection-
enabler mechanism used We start the discussion with the

Base Network field, which contains the most relevant CNN

microarchitectures adopted as base structure for designing

the final actual neck architecture. Setting aside the RPN

intended for the synthesis of RoI within two-step detection

frameworks and not for the enhancement of the represen-

tational power of the features involved, it is possible to

group those microarchitectures into three differentiated

categories or approach types according to the type of

multiscale-detection-enabler mechanism used: (i) the

exploitation of a pyramidal feature hierarchy, (ii) the

recovery of high-resolution representations from low-res-

olution representations, and (iii) the maintenance of high-

resolution representations throughout the entire network.

This classification does not include HyperNet [87], more

specifically, the Hyper Features extraction network used as

neck. Although it relies on the fusion of different feature

maps, thus being excluded from (i), the performed feature

aggregation does not involve the generation of higher

resolution representations, making it also non-
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categorizable in (ii) or (iii). Setting aside this exception, we

will now discuss the specific features that characterize each

of the three approach types indicated, and we will also

address specific aspects concerning the different related

architectures to clarify the underlying design principles.

i. Pyramidal feature hierarchy This is the simplest

approach of the three categories identified, purely focused

on detecting objects of interest with different sizes due to

the exploitation of pyramid-shaped multiscale feature

maps. It is represented in Table 1 by the SSD and SSDLite

[48] detectors. SSD, as mentioned in Sect. 2, constitutes

one of the more paradigmatic architectures within this

approach, while SSDLite simply represents a lighter ver-

sion of SSD, explicitly conceived for mobile devices by

replacing conventional convolution operations with depth-

wise separable convolutions, a practice that has been

extensively adopted for alleviating the computational

complexity of traditional CNNs, as shown below. Aside

from this particular point, SSDLite does not introduce

additional architectural concepts of interest beyond those

already materialized in the original SSD architecture.

ii. Recovery of high-resolution representations This

approach involves the fusion of multiscale feature maps to

solve the lack of accuracy problem when detecting small

objects, upsampling low-resolution representations to

recover high-resolution representations progressively. This

category possibly encompasses the most widely used neck-

specific methods among those reviewed, covering main-

stream pyramidal architectures such as FPN [86] or

Hourglass [88], more compact alternatives such as Depth-

wise FPN (D-FPN) [95]—which incorporates more effi-

cient depth-wise convolutions into regular FPN—or

YOLOv3-Tiny’s neck [120], and even more differentiated

proposals such as NAS-FPN [111]—exploiting feature-fu-

sion building blocks automatically derived using Neural

Architecture Search (NAS)—or FSSD [89]—an improved

version of the SSD architecture. Among the approaches

just mentioned, FPN is undoubtedly the most representa-

tive architecture for pyramid-like feature representation

generation in object detection. According to the data pre-

sented in Table 1, FPN represents the architectural option

that has been selected by more authors (ten papers out of a

total of fifteen, including the D-FPN and NAS-FPN vari-

ants) as the foundation for building the neck part in the

lightweight detection proposals.

D-FPN and YOLOv3-Tiny’s neck are particularly

interesting, since both of them follow the current on-device

trend of exploring computer vision solutions tailored to

low-power devices. D-FPN shares the same dual-path

architecture as FPN (an initial downsampling stage fol-

lowed by a second inverse stage) but it also succeeds in

reducing upsampling path’s computational complexity by

exploiting a more optimal structure consisting of a bilinear

interpolation layer followed by a depth-wise convolution.

With regard to YOLOv3-Tiny’s, the final implemented

network results from a profound structural simplification,

as is the case with the detector’s global architecture. That

structural simplification is performed by means of aggres-

sive optimization practices such as the significant reduction

in both the number of considered scales and integrated

layers on the original YOLOv3 network [77], or the fusion

of only single-scale features, which is certainly to the

detriment of the semantic richness of the extracted features

and, ultimately, the detection accuracy.

iii. Maintenance of high-resolution representations

Along the lines of the previous approach, this strategy

pursues a convolutional architecture design aimed again at

the generation of high-resolution representations; in this

case, however, communicating those representations

throughout the entire detection network in order to avoid

transitions between high and low resolutions, common in

multiscale approaches. Specifically, High-Resolution Net

(HRNet) [126], the only architecture listed in Table 1

corresponding to this paradigm, goes beyond multilevel

fusion and, as an alternative, proposes taking a high-reso-

lution convolution stream directly as a starting point,

subsequently connecting in parallel one stream per con-

sidered resolution, thus exchanging information between

multiple streams. In this way, multi-resolution fusion can

be performed recurrently, resulting in high-resolution rep-

resentations with great semantic richness and spatial

precision.

3.1.1.2 Classification according to the enhancement type
produced The architectural solutions space just discussed

clearly indicates a strong presence of pyramidal CNN

models, originally designed as building blocks of standard

unified detectors, halfway between the current on-device

approach and the more complex traditional architectures.

Those models, although able to produce better represen-

tations than those generated by ultra-compact networks,

typically feature both a complexity and size impracticable

for systems with modest capabilities, as well as an accu-

racy level lower than what is commonly reached by two-

step detection frameworks. In that regard, the use of a pre-

existing base CNN architecture, even though it is a practice

that can lighten and, in certain occasions, completely

bypass the study and design of specific solutions, stream-

lining the design of new architectures for the neck, does not

itself constitute an optimal solution. As noted in Sect. 2, a

twofold effort to advance in the direction of an improved

speed-accuracy trade-off, with emphasis on techniques for

size and computational complexity reduction so as to

consequently reduce latency (i), but also exploring methods

toward more expressive networks and therefore with

greater detection capacity (ii). Next, we present the key
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strategies and methods adopted in both directions to obtain

a structure compliant to on-device paradigm’s efficiency

principles, omitting overly specific design details in order

to keep a desired level of abstraction to facilitate the

applicability of the adjustments required in different

architectures or future cases.

i. Size and latency reduction This approach pursues

building network architectures that could result in models

with fewer parameters and lower computational complex-

ity, that is, with smaller size and higher inference speed.

The use of factorized convolutional filters represents the

most paradigmatic mechanism related to this approach

[48, 91, 92, 95, 97, 108, 111], constituting in itself a CNN-

compression-specific subcategory of techniques that

encompasses several lighter and faster variants of the

standard convolution operation such as depth

[48, 91, 92, 95, 97, 111] and group convolutions [108]. In

addition, this group also embraces techniques based on the

integration into the architecture of building blocks such as

attention modules, used in [93] to both reduce the number

of pixels to be processed in region-based detection and

thereby increase the speed of object detectors, and Fire

modules, explored in [96, 108] to, again, lower the number

of parameters while preserving accuracy. Along the same

lines, supplementing the exploitation of such blocks, Wang

et al. [106] report the application of the recent CSP design

[125] to the various structural components of a detector as

a highly beneficial alternative to the more traditional

residual connections able to reduce the number of param-

eters, the computations and the inference time. Finally, this

category also includes more simplistic techniques such as

the direct reduction of the quantity of weights in the net-

work, for instance, removing larger feature maps as in

[107]; the use of layers based on 1x1 filters instead of fully

connected layers to perform predictions [107]; or the

simple optimization of the number of filters used, even if

that involves breaking the ruling microarchitectural

homogeneity in CNN building blocks, as in [96].

ii. Detection performance increase This is a significantly

more heterogeneous approach than the one presented in

(i) aimed at achieving better classification performance but

mainly focused on increasing detection accuracy, espe-

cially in complex applications such as small target detec-

tion. It is possible, therefore, to identify, two differentiated

strategy types: general-purpose methods

[91, 92, 97, 107, 108] applicable for any CNN and

grounded in concepts that shall emerge again in the dis-

cussion of the backbone; and object-detection-specific

methods [91, 94, 97–99, 102–105, 109, 115, 117], pri-

marily focused on improving localization tasks.

Since the emergence of CNNs, there has been a well-

known and long-standing interest, regarding general-pur-

pose methods, in improving the performance of vision-

based systems in classification tasks, exploring solutions

aimed primarily at increasing the representation capacity of

the built networks and, consequently, improving learning

and accuracy. Although many of the actions taken to that

end, such as making the network deeper, are largely

impractical in the on-device context, the underlying phi-

losophy remains completely applicable, and it also con-

stitutes the foundation of a considerable body of more

specific approaches or subcategories seeking lightweight

solutions. As shown in Table 1, various studies can be

found in the literature, such as: [108], which explicitly

seeks to provide CNNs with a better and more efficient

representation learning capacity by leveraging group con-

volutions, as in the referenced work; studies that perform

more simplistic practices, for instance, exploiting larger

convolution filters [91] and removing subsampling layers

[92], to achieve or maintain a large-sized receptive field,

enabling the subsequent encoding of a larger volume of

information; approaches [107, 108] that, for example, rely

on the addition of shortcut connections (residual blocks) in

the network architecture in order to alleviate the vanishing

gradient problem; strategies for increasing nonlinearity,

such as the use of 1x1 pointwise convolution operations

[97] or the use of the Hard Swish (h-swish) activation

function instead of a more standard option such as Recti-

fied Linear Unit (ReLU) [92]; and, finally, mechanisms for

better information flow, such as the aforementioned

shortcut connections [107, 108].

In terms of detection-specific enhancement solutions,

these are usually methods that, based on multiscale feature

maps [98, 109] (essential for the detection of multiple targets

with different sizes), aggregate low-level high-resolution

features with high-level semantic features to achieve greater

semantic richness [91, 94, 97–99, 102–105, 109, 115, 117] as

a result. Apart from two specific contributions that propose

efforts directly related to the exploitation of multiscale fea-

tures—increasing the number of different scale levels con-

sidered for the output [98] and using encoder–decoder

structures for feature generation at different levels [109]—

we identify table methods in the lightweight-detection-ar-

chitecture-devoted that are essentially located in the space of

solutions aimed at obtaining more valuable features,

semantically speaking. More specifically, data presented in

the table in this respect create a scenario where the fusion of

multiscale feature maps [94] constitutes the dominant

approach and where related works primarily focus both on

different information transfer and exchange structures,

namely dense connections [103, 115] and inverted residual

blocks [99, 104, 105], and on attention mechanisms, an

approach primarily aimed at extracting more discriminative

features, mainly channel-wise [98, 104, 105] but also

simultaneously at the spatial and channel level [102].

Additionally, several other approaches that also seek to
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improve the network’s expressiveness can be identified, but,

in this case, they are achieved by enriching intermediate

features due to the use of the convolution on dimension-

reduction blocks [97] or by using attention modules to adjust

the feature distribution and thus facilitate the distinction

between background and front features (spatial attention)

[91].

3.1.2 Detection head architectural principles

Twenty-one [47, 95, 96, 99, 100, 102–117] out of the thirty

papers reviewed show no action explicitly focused on the

design of the head for lightweight detectors other than the

study and selection of the base network architecture to be

used. It is possible to go a little further and even state that

there is no trace of apparent activity in this regard since the

different microarchitectures used for this purpose (at least,

the ones reported in Table 1) are merely the structures

proposed as detection head of the corresponding base

detection frameworks. This is even extended beyond this

group of publications that do not address head-specific

enhancements and remains as a constant throughout all the

works listed, with the dual exception of BMNet, which

does not provide head-specific information at all, and

LightDet, which proposes its own microarchitecture con-

ceived from scratch.

Regarding the different architectural alternatives used as

a reference for the design of the head in lightweight object

detectors, Table 1 shows a general scenario very similar to

the one described in the previous point for the neck,

dominated by networks initially conceived as structural

elements of unified detectors, but a scenario that, in this

particular case, features a slightly broader range of options.

An initial superficial exploration of the data collected in the

table makes it possible to infer a predominant network type

or profile characterized not only by its unified architecture

but also by its ability to detect objects with different scales

and aspect ratios due to multiscale feature processing and

the use of anchor boxes in the detection process. Thus,

fitting the profile outlined, a total of six base head designs

(originally part of SSD, SSDLite, YOLOv3, YOLOv3-

Tiny, RetinaNet, and RefineDet) adopted in eighteen of the

twenty-five works studied can be found in Table 1. There

are also microarchitectural alternatives that do not, albeit

almost marginally, conform to the well-known anchor-

based approach, either because they have been imple-

mented as a part of a two-stage detection pipeline (Faster

R-CNN and Light-Head R-CNN), despite relying on

anchors, or simply because they have been conceived as

part of non-anchor-based detectors (YOLO, CornerNet,

and FCOS [127]).

Regarding any modifications applied to the base archi-

tecture, the two-fold approach already identified during the

neck-related discussion in Sect. 3.1.1 (and present in the

backbone analysis as well) emerges again. Thus, it is

possible to classify the neck-specific enhancement methods

into the same two categories or approach types: a first

group focused on size and latency reduction (i) and a

second body of techniques with an emphasis on increasing

or at least maintaining detection accuracy to make up for

the potential harm caused in this respect by the techniques

in the first category (ii). Overall, there is a major gap in

terms of prevalence distribution between neck-related

adjustments and those targeting the detection head. More

specifically, the data presented in Table 1 show that there is

an evident polarization of head-centered techniques into

two distinct groups that did not emerge in the analysis of

neck-related approaches. Thus, except for a couple of

papers that can be simultaneously associated with the two

different approach types considered [92, 94], every single

modification can be located in one of the two indicated

solution spaces. That divergence becomes even more pro-

nounced if we take into account the size of those spaces:

quite even for the two groups when it comes to the neck

while significantly uneven when talking about the head.

Furthermore, regarding the latter, the subgroup of methods

that seek to lower computational and memory cost have an

evident prominence (approach embodied by five publica-

tions [48, 91, 93, 98, 118] referenced in Table 1) compared

to the method that encompasses accuracy-centric modifi-

cations (with only two representative works [97, 101] in the

table).

Turning now to specific approaches, we identify in

group (i) strategies that are mainly aimed at reducing the

number of parameters in the models produced, and thus are

able to initially reduce the models’ size, and consequently

in many cases, their computational complexity as well.

Among them we can distinguish techniques eminently

focused on the inner configuration of layers and, therefore,

on the modifications of filter-specific aspects: the use of

depth-wise separable convolutions instead of standard

convolutions [48], the decrease in the number of channels

[91], or the use of smaller-sized convolutional filters

[93, 94]. Also included in this parameter-reduction-ori-

ented subgroup are methods that address more general

layer-related considerations, such as replacing fully con-

nected layers with convolutional layers [118] or simply

omitting a subset of the layers that can be found in the

original architecture [98]. Finally, to complement the dif-

ferent approaches just mentioned, we also associate to

group (i) a different subcategory or approach type that

directly pursues computational complexity reduction, rep-

resented in Table 1 by a single paper [92] that proposes the

addition of dedicated layers for removing the background

of the given input image (suppression of non-useful
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information) to reduce the number of pixels to be

processed.

The second head-specific- category or group (ii) is

monopolized by the exploitation of residual blocks as a

constituent part of the head’s structure [92, 94, 97, 101].

Such an approach is able to both increase the detection

accuracy and contribute to reducing the resulting network’s

memory requirements. Used as an enhancement mecha-

nism also for the neck’s architecture, as indicated in

Sect. 3.1.1, this type of block integrates the so-called

shortcut connections to allow the flow of information

between shallow and late-stage layers and thus keeps the

semantic richness of features [97]. The value of residual

connection goes beyond its accuracy-enhancement ability;

it has also been adopted as the base structure for conceiving

architectural alternatives equally advantageous in terms of

detection accuracy, such as the bottleneck residual block

[101], capable of fusing high-level multi-scale features, the

inverted residuals and linear bottlenecks [92] that enable

increasing the representational power of channel-wise

nonlinear transformations, and a lighter version [94] that,

inspired by group convolutions and comprised of two dif-

ferent branches, leverages channel shuffle to allow infor-

mation exchange between branches.

3.1.3 Efforts for a more efficient backbone

Specifically, concerning the architectures integrated as

backbone in the detection frameworks under examination,

the related data collected in the table confirm the pre-

dominant, but not exclusive, use of simplified CNN

architectures. Excluding FRDet [100]—with no represen-

tative data reported in Table 1 about the network or

architecture used as backbone—twenty-four frameworks of

a total number of thirty use a lightweight subnetwork as

backbone. Furthermore, in that group we can identify just

ten distinct alternatives, a number that could be even lower

if grouped into families of detectors: MobileNets

[47, 48, 92, 99, 111–113, 115, 117], ShuffleNets

[91, 94, 97, 104], SqueezeNet [96, 108, 118], PeleeNet

[102, 107], and DarkNet-19 [103, 109, 114, 116]. Google’s

MobileNets emerges as the most dominant lightweight

architectural solution. This observation, although it ignores

configuration or structural efficiency matters (they will be

addressed in the next section), is entirely consistent with

the evolutionary sequence of on-device vision models

reported in the literature, where MobileNets, first intro-

duced in 2017 [47] and with three different versions, stands

as the most mature compact alternative as well as one of

the main drivers of the growing attention generated by

ultra-compact vision models in the research community

during the last few years. Finally, regarding the rest of the

backbone-specific architectures referred to in the table,

apart from the lightweight alternatives, it is possible to

identify a second group that encompasses five standard

CNN architectures [93, 95, 98, 101, 110], where, beyond

the mere intuition of a more specific nature, it is not pos-

sible to infer any pattern that might be of interest in this

analysis.

In a joint review of the several architectures adopted as

backboneand theadjustments applied to them, it is possible to

extractobservations that,whilenotbackedbyspecificmetrics

and measurements, provide valuable intuition about the per-

formance and, in general, the suitability of the architectural

solutions proposed. In that sense, even though lightweight

CNNarchitectureshavebeendesignedfromscratch,bearingin

mind the hardware limitations of the target devices, and have

largely succeeded in deriving models of extremely reduced

sizeandcomplexity,theymaystillbeinsufficientorinadequate

solutions depending on various factors such as the hardware

platformandtheapplicationdomain.Thisrealityisreflectedin

Table1,where fewstudies reportdirectlyemployingcompact

CNN architectures as backbone of the detector

[47,48,97,105,107–109,111,113,118],whileafairmajority

proposes specific enhancements or optimizations

[91, 92, 94, 96, 99, 102–104, 106, 112, 114, 116, 117] for the

architectures previously selected. Going into more detail, a

closer look at the data on such modifications allows us to

identify an approach that is fundamentally oriented at obtain-

ing greater precision [91, 92, 94, 99, 103, 104, 112, 114, 117],

which confirms the need to make up for the accuracy degra-

dation typically resulting from the structural simplification or

miniaturization of the network.

Limiting our focus to the modifications applied to the

architecture selected as the starting point for building the

backbone, it is possible to categorize the strategies and

methods listed in the table into the same two groups we

considered for this purpose in both Sects. 3.1.1 and 3.1.2.

Hence, we identify once again a group of techniques on

one side of the table that respond to a size and latency

reduction approach, and, on the other side, a collection of

methods focused on preserving ad increasing accuracy.

The first group contains techniques basically aimed at

reducing the computational cost of the network. As we

pointed out in relation to the mechanisms designed for

enhancing the head’s structure, it is possible to identify two

different types of solutions within this group according to

the architectural level they operate on. In particular, in a

first microarchitectural subgroup, we find (i) approaches

based again on the exploitation of more efficient variants of

the convolution operation, such as depth-wise convolutions

[95, 98, 102], depth-wise separable convolutions [93, 116],

and group convolutions [98]; and in the second group we

find (ii) strategies that have a direct effect on the config-

uration of the convolution filters used in layers or blocks of

the CNN, i.e., both methods targeting the number of
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filters—reducing the number of filters of the first layer of

the network [112], selecting an optimal number of filters

specific per building block [96], and the choice of a better

compression rate for Fire modules [100]—and additional

techniques focused on the number of channels—linearly

increasing the number of channels as the network deepens

[95], or assigning the same number of channels both to the

input and output of residual blocks such as Res2Net [101].

Finally, in addition to the slimming strategies pointed out,

there is a second collection of solutions that address the

same problem, but, through a macro lens, exploring dif-

ferent design options such as the removal of some layers

present in the original architecture, the CSP-ization of the

network [106], the use of Fire modules [93, 103] (with

greater ability to reduce the number of parameters), the

thinning of layers and building blocks [93], and more

appropriate distribution of subsampling layers across the

network [93, 101].

Closing this review of the specific tweaks performed on

the backbone, we can also identify in Table 1 a substantial

number of studies that explore alternatives in the search for

greater accuracy in object detection. Among the options

listed, the residual block structure, based on shortcut con-

nections, is revealed as the most versatile approach in this

regard, constituting an effective solution for increasing

accuracy both in classification and detection tasks and also

the preferred option [98–100, 103, 114] among the several

related alternatives presented in the table. Interest in the

ability of residual connections to enable better feature

propagation and guarantee maximum information flow

across the network goes beyond the residual block. Thus,

that type of connection has been successfully incorporated

into other building blocks, being used, for example, as an

upgrade of Fire modules [100] or as an integral part of the

inverted residual blocks exploited in [99] to achieve better

multi-scale detection. In addition to the detection-specific

techniques for better accuracy just mentioned, the accu-

racy-focused approach also encompasses a second collec-

tion of methods primarily designed to provide better class

predictions. In the table, we can distinguish the following:

(i) approaches that seek to increase the size of the receptive

field due to, among other practices, the use of larger con-

volution filters [91, 104, 117], the insertion of bottleneck

layers for subsampling at different stages of the network

[101], and the use of dilated convolutions in the network

stem [92, 94]; (ii) studies such as [94] or [91], which by

using either dilated convolutions or convolutional filters

with a higher number of channels in early stages of the

network, seek to extract and preserve more low-level fea-

tures; and, finally, (iii) alternatives of a more punctual

nature, already mentioned in the two previous analysis

made correspondingly on the neck and head-oriented

modifications, such as the use of the h-swish activation

function [112], the inclusion of attention modules to

increase the representation power of the network [92, 117],

or the application of channel shuffle after group convolu-

tions to enable information exchange between groups.

3.2 High-efficient CNN architectures
for backbone build

The analysis of the mechanisms and design strategies

adopted for conceiving lightweight detection frameworks

reveals a constant interest in finding a better trade-off

between accuracy and detection speed. In this context, the

backbone constitutes the key component within the object

detector architecture, not only because it lay downs the

structural guidelines for detectors but also because it is the

component responsible for processing input images in the

first stage of the detection pipeline in order to extract the

features that are supplied later on to the two remaining

components of the detector. Backed by the data collected in

Table 2, we extend the analysis performed in Sect. 3.1.3

with additional lightweight CNN architectures that, despite

not having been used to date for building detection

frameworks in the on-device context, have been entirely

conceived under the design principles of this paradigm. As

in the different subsections included in Sect. 3.1, we will

address the structural specificities of the different CNN

architectures considered, focusing our efforts on identify-

ing the principal techniques and methods applied in each

case.

In a first superficial review of the data included in the

table, which was focused only on the first four columns, it is

possible to derive several general points that add further

detail to the on-device scenario so far presented. The archi-

tectural developments, with the exception of the study from

2016 by Iandola et al. [49], are temporally located between

2017 and 2021, just like the different detection frameworks

above analyzed. Once again, it confirms the chronological

parallelism between lightweight-CNN-specific and ultra-

compact-detector-specific development approaches already

pointed out in Sect. 3.1.3, and it also reinforces the key role

that recent general computer vision progress has played in

developing ultra-compact detection systems. Regarding the

CNN architectures used as a reference for conceiving algo-

rithmic solutions deployable on low-powered devices,

except for a handful of authors working on conventional

CNNs [47, 49, 54, 55, 101, 105, 107, 125, 128, 129], the

mainstream focus has been on exploiting lightweight archi-

tectures as the starting point. Moving on to the detail of the

specific architectures used for that purpose, a family-based

grouping of the several approaches considered can be easily

observed (MobileNets [48, 130–134], ShuffleNets

[50, 52, 135], SqueezeNet [136], and CondenseNet [55])

bearing a strong similarity to the approach laid out in the
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previous section, emerging again as the most used light-

weight architectural solution the MobileNets family. The

residual structure also stands out as the design pattern with

the more significant presence in these architectures, either

directly as part of the base standard CNNs

[54, 55, 101, 107, 125, 128, 129] or as the base structure of

the novel building blocks resulting from the enhancement

techniques and methods applied.

If we turn our attention to the various adjustments made,

the first thing that stands out is the significantly higher

number of enhancements listed in Table 2 for each study if

we compare it with the number of entries that we can see

for the same concept in Table 1. Those data highlight the

complexity of the miniaturization and rational simplifica-

tion of CNN architectures for use on edge devices, as well

as the enormous research efforts undertaken in this line in

recent years, which has made it possible to enhance and

streamline the design of specific on-device solutions in

different vision-related application domains, such as object

detection. There is, however, a gap between the predomi-

nant backbone-focused adjustment type found in Table 1

and the type derived from Table 2. More specifically, in the

first case, we mostly find techniques and methods that

emphasize achieving greater precision for producing a

lightweight backbone design (mainly defined by the base

CNN architecture), yet with an effective expression

capacity to properly act as a structuring element in detec-

tion systems. In contrast, for the adjustments listed in

Table 2, the focus is placed on obtaining more efficient

CNN architectures (in particular, in seventeen

[47–50, 52, 54, 55, 104, 107, 125, 128–131, 133, 135, 136]

of the twenty-one works under study), also considering

new avenues of exploration in this respect such as the

reduction of memory access cost or the exploitation of

more efficient optimized-implementation-based operations

at the code level.

In terms of scope at the architectural level, we can make a

first classification of the enhancement techniques and

methods considered in two different types of approach: those

operating at the microarchitectural level, i.e., at the inner

level of layers and modules; and those working at the

macroarchitecture level, defining arrangement-specific

aspects regarding the different modules or layers within the

CNN architecture. Beyond the data collected in the Archi-

tectural scope field in Table 2, which aims to capture the

general essence of the several related works listed, a more

detailed analysis of required adjustments provides a much

more accurate picture of the trend in terms of structural

design, especially with such an important body of informa-

tion as the one presented in the table. Thus, although a

majority of microarchitectural adjustments can already be

noted from the data in the Architectural scope field, that

becomes even more evident when the data included in the

Adjustments column are incorporated into the study.

Numerically speaking, only fifteen macroarchitectural

adjustments are identified compared to the fifty observed at

themicroarchitecture level.More specifically, the first group

of approaches encompasses strategies to enhance the CNN’s

overall architecture by (i) replacing a certain type of layers or

building blocks with more lightweight alternatives

[49, 131, 132] or variantswith greater capacity tomaintain or

even increase the expressiveness of the network [101], (ii)

implementing guidelines governing how certain network

properties or elements evolve as it becomes deeper [49, 55],

and (iii) appropriately configuring the connections between

layers or modules [48, 55, 105, 125, 129]. Within the group

ofmicro approaches, we find awide range of options that can

be categorized into two distinct subgroups: an initial col-

lection of techniques that focus on convolutional-filter-

specific aspects or properties such as the number of filters

[107], the size of these in the spatial dimension [49], the

number of channels [49, 52, 101, 105, 107, 130], the com-

munication between them [50, 54], or the number of channel

groups [101]; and a second subgroup encompassingmethods

targeting the internal structure of layers or modules such as

the exploitation of alternative operations to convolution

[47, 48, 50, 52, 54, 105, 107, 128, 130, 131, 133–136], the

replacement [48] or omission [133] of nonlinearity, or the

application of an attention mechanism [53, 132, 133].

Keeping structural consistency with the different sub-

sections in Sect. 3.1, we establish a second categorization

of the adjustments under consideration, according to the

targeted network-accuracy-specific features or aspects.

Thus, we identify techniques that respond to a size and

latency reduction approach and as well as methods focused

on preserving and increasing accuracy as much as possible.

In the first category, the usage of less costly convolu-

tions—depth-wise convolution [47, 48, 54, 105], separable

convolution [136], and depth-wise separable convolution

[53]—stands out again as the most common approach,

extended in this case by the exploration of other practices

that revolve around additional efficient operations:

replacing costly standard convolutions with memory shift

operations [50, 128] for information fusion, information

exchange between channels, and channel concatenation;

replacing 1x1 group convolutions with a less complex

channel split operation [52]; using simpler linear opera-

tions for partially generating feature maps [133] instead of

fully using convolutions for that; or designing a novel

building block to encode spatial and channel information

with higher efficiency than depth-wise separable convolu-

tions [135]. Precisely in relation to channels and, specifi-

cally, to the introduction of sparsity in the connections, we

identify a second large group of adjustments that encom-

passes some of the strategies already observed in previous

analyses such as the replacement of pointwise convolutions
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with group convolutions [54, 132], but also unseen related

techniques, such as the replacement of pointwise convo-

lutions with channel wise more sparse convolutions [131],

or the conception of a novel type of convolution that

extends group convolution and, in contrast to the latter,

allows an output channel to depend on an arbitrary subset

of input channels, thus obtaining greater computational

efficiency and reducing the number of parameters. Also

related to channels, but in this case, focused on the number

of channels handled, we identify additional enhancement

strategies that pursue channel reduction [49, 136] and some

others that lead to interesting guidelines about what the

ratio between the number of input and output channels

should be in order to lower the computational cost

[105, 107] or the memory access cost [52]. Rounding this

collection of efficiency-focused adjustments, there are

several solutions of a more precise nature, such as

exploiting convolutions with a more efficient software

implementation [107, 136], using more efficient residual

structures [125, 129] or downsampling strategies [105],

omitting h-swish nonlinearity due to its high latency [133],

merging successive element-wise operations, and thus

lowering this type of costly operation in terms of memory

access [52], removing redundant connections [55], using

smaller-sized convolutional filters [49], or replacing heavy

layers with a lighter alternative [49].

Finally, regarding refinement approaches expressly

designed to preserve or increase accuracy, it is possible to

distinguish a considerable range of different techniques,

which are, however, practically evenly distributed.

Specifically, except for just one of the adjustments in

consideration, it is possible to cluster the options listed into

seven distinct groups, each comprising two specific

strategies or methods. We have identified the following

groups in the table: (i) approaches aiming to prevent fea-

ture map size reduction in order to avoid harming the

network expressiveness, either by delaying subsampling,

i.e., moving subsampling layers or blocks to deeper stages

of the network [49], or by using transition layers—com-

posed of convolution and pooling operations—without

compression [107]; (ii) methods that, like channel shuffle

[54] already introduced in Sect. 3.1.3, enable information

exchange between channels, either via more efficient

memory shift operations [128], or in a more straightfor-

ward way replacing point-wise group convolutions with

alternatives that do not block the above-mentioned infor-

mation exchange between groups [53]; (iii) techniques

based on the exploitation of the residual block structure,

adding to the network architecture not only the already

well-known shortcut connections [48], but also dense

connections to boost feature reuse [55]; (iv) strategies that

rely on the gradual increase of the growth rate in dense-

connection-based networks [55, 107] to cost-effectively

increase feature expressiveness; (v) approaches focused on

the receptive field that, in line with some of the practices

already identified for neck and head refinement, aim to

both increase its size [134] and also generate variations

with different scales [107]; (vi) the integration of attention

mechanisms [132, 133] to boost representational power;

and even (vii) simpler practices such as removing nonlin-

earities in shallow layers to preserve the representativity of

the network as well [48].

4 Learned lessons and conclusions

This paper provides a review of the leading recent research

efforts aimed at bringing historically demanding object

localization and classification tasks to terminal devices

with limited memory and computational resources. In

particular, the study provides a comprehensive analysis of

the main CNN architectures specifically designed to gen-

erate efficient and compact vision models directly

deployable on mobile and embedded devices as part of

real-time object detection software solutions. That is why

we cover in this study the most relevant architecture

strategies and techniques that have been used not only to

enhance the design and configuration of the different

components that comprise this type of solutions—back-

bone, neck, and head—but also and primarily to make them

suitable for more austere deployment environments, are

contemplated in the study.

The backbone is the most critical element in the detec-

tor’s architecture because of its predominance in the gen-

eral structure of the detector as well as its impact on the

performance of the ‘‘wrapping’’ framework. Specifically,

the detection system’s accuracy significantly depends on

the expressiveness of the CNN used as backbone and on

the ability of the latter to extract representative properties.

Likewise, aspects of the backbone’s topology, such as the

depth or size (in both the spatial and channel dimensions)

of the layers, have a strong influence on the final compu-

tational complexity and memory requirements of the

resulting detector. However, even though it has a tremen-

dous influence on the detector’s accuracy and efficiency,

the direct translation of general-purpose CNN networks to

object detection by merely replacing the final classification

layers with a detection head does not constitute an optimal

solution.

Ultra-compact detectors, for instance, MobileNet? SSD

[47] and Mobile-YOLO [113], emerged precisely from the

replacement of the backbone network integrated into sin-

gle-stage detectors (SSD [47] and YOLOv3 [77], respec-

tively) with an even smaller and lighter CNN architecture,

such as MobileNet [47] and MobileNetV2 [48], explicitly

conceived for mobile vision applications. The adoption as a
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starting point of a macroarchitecture based on a unified

pipeline primarily oriented toward higher inference speed,

jointly with the adoption as backbone of a slimmer and

simplified network model, enables building high-speed

detection systems. This simplistic approach, however,

delivers processing times that fall short of real-time per-

formance and, worse yet, an accuracy level far below the

values reported for state-of-the-art approaches.

The design of appropriate architectural solutions

requires a more comprehensive approach, based on the

exploration and application of techniques and methods

compliant to the singularities of each of the components in

the detection pipeline, aimed at increasing accuracy and

reducing both complexity and size in order to achieve a

more desirable latency-accuracy trade-off. In this regard,

the present work evidences the strong attention the neck

has attracted from the research community, an interest that

sharply contrasts with the lack of contributions focused

explicitly on the detection head structure, usually derived

directly from the detection framework adopted as the base

architecture. The role played by the neck in modern object

detection frameworks is particularly relevant for localiza-

tion tasks. More specifically, it is responsible for the gen-

eration of high-resolution representations

[86, 88, 89, 95, 111, 120], the exploitation of multi-scale

feature maps [48, 72], and the fusion of the latter to ini-

tially extend and refine the features extracted by the

backbone, and consequently, enable the detection of both

objects with different scale values and small-sized targets.

Inaddition to theoverviewonthe several architectural solu-

tions that shape current lightweight detection pipelines, a vast

numberofsignificanttechniquesandfactorsregardingthedesign

process have emerged as a result of the analysis performed

throughout Sect. 3 on dozens of publications focused on the

constructionofbothdetectionsystemsand, ingeneral,onultra-

compactCNNsnetworks.Amongthecollectionofarchitectural

modificationsdiscussed,itispossibletopinpointafairnumberof

points and practices that remain a shared research focus for the

three different components in an object detection framework:

(i) thejointexploitationoflow-levelfeatures,extractedinearly

stagesofthenetworkandcriticalforlocalization,andhigh-level

features,extractedinlatestagesandfundamentalforclassifica-

tion[91,94,97–99,102,103,109,115];(ii)thepropersizingofthe

receptive field for learning high-resolution features

[91,92,94,101,107,134]; (iii) theconfigurationof thenumber

and dimensions of convolutional filters

[49, 91, 93, 94, 96, 104, 105, 107, 112, 117], with both factors

havingasubstantialimpactonthenetworkaccuracyaswellason

thesizeandcomputationalcomplexityofthederivedmodels,and

with the decomposition of convolutional filters

[48, 91, 92, 95, 97, 108, 111] being particularly relevant in this

respect;(iv)thedesignofoperationsmoreefficientthanstandard

convolutions

[48,50,91–93,95,97,98,102,105,108,111,116,128];and(v)the

exploitation of channel correlation, an approach comprising

some of the most popular methods such as the use of shortcut

connections[48,98–100,103,105–108,114,125,129]andgroup

convolutions[54,108,132].

The rational choice of a detection framework and a base

backbone architecture, both small-sized, together with the

introduction of tweaks eminently oriented to the reduction

of the size and complexity of the underlying CNN network

(while also accuracy-compliant), has already produced

promising results, as reflected by the evaluation data col-

lected in Tables 1 and 2. Even though there are some works

such as

[52, 91, 97, 99, 100, 103, 107, 111, 114, 125, 133, 135] that

report very low latency values, thereby confirming the

feasibility of real-time object detection on edge devices,

there is still an overwhelming majority of them that either

fail to achieve such efficiency or present significant gaps in

the evaluation that somewhat blur the results presented

above. Regarding the latter point, the tables list: (i) works

that have not considered execution speed as a metric for

efficiency assessment, relying merely on the number and

computational cost of the operations involved

[47, 49, 53, 96, 101, 128, 131, 134]; (ii) studies that provide

no information about the devices used for the execution

and testing of the models, reporting in many of those cases

only the hardware configuration used for training

[47, 49, 53, 93, 96, 98, 101, 102, 105, 112, 128, 131]; and

even (iii) publications that report real-time performance but

only for solutions tested on desktop devices with high-

powered graphics, and, therefore, do not experience the

hard memory and computational constraints that charac-

terize the on-device paradigm

[50, 92, 94, 95, 101, 108, 109, 115, 129].

These absences do not tarnish the remarkable work done

so far on the miniaturization of DL-based detection solu-

tions. However, they do represent and direct us to highly

relevant issues that need to be addressed in future work.

We conclude the present study by briefly discussing those

challenges, identifying specific research problems, and

pointing out possible approaches to be explored.

With particular regard to the challenges that still lie

ahead, there is, generally speaking, a notable absence of

specific discussion on factors closely related to the support

hardware configurations used in lightweight detection

systems, precisely in a domain where hardware limitations

constitute the principal point to consider for building

proper detection frameworks. Instead, with the exception

of two specific studies that include memory access cost

[52] and energy consumption [136] in their analysis,

researchers have primarily focused their efforts on evalu-

ating how efficient and robust the conceived approaches

are, eminently adopting the number of operations required
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and, less frequently, the execution speed of the derived

models as efficiency metrics. Moreover, the portfolio of

DL-oriented hardware acceleration solutions has grown in

the last few years as a result of advances in the mobile

sector and also the development of novel cutting-edge

chipsets designed ad hoc accelerating artificial intelligence

tasks. Although GPUs have become a de facto standard

when it comes to real-time DL inference on edge devices,

there is still an important gap in the study and exploitation

of modern AI accelerators.

Leaving hardware-specific issues aside, several other

issues emerge from the research performed, in this case,

related to the design and assessment of detection frame-

works and their underlying architecture. Thus, although

CNNs have meant a tremendous step forward in computer

vision, enabling the automation of feature extraction and

thereby reducing the need for human intervention in the

solution-making process, the design of both lightweight

detection frameworks and, in general, of CNN architec-

tures optimized for low-power hardware platforms is usu-

ally the result of an in-depth research effort, derived from

expert knowledge and mostly driven by an exhaustive

exploration of the myriad of existing operations and design

alternatives, all of which makes the process of finding an

optimal configuration costly. When evaluating the solu-

tions found in the literature reviewed, a significant disparity

can be intuitively observed in the decisions made as part of

the protocols used to evaluate and compare the proposed

approaches. The heterogeneity observed on matters such as

the dataset used, the hyperparameters configuration, or the

testing hardware, although it does not invalidate the

reported results, definitely introduces a certain degree of

uncertainty. Indeed, it is for this reason that, despite being a

standard practice, we have avoided using specific accuracy

or efficiency values in the present study to substantiate the

observations derived.

Despite the recent tremendous interest and subsequent

progress on DL object detection models deployable on

mobile and embedded devices, we still observe a fair

number of substantial questions that remain to be answered

to reach a desirable level of maturity. Therefore, we have

outlined some potential future lines of work that could lead

to further steps toward such maturity:

• Incorporating to the evaluation of additional hardware-

related aspects for on-device solutions that may affect

their final performance, by either generalizing the study

of energy consumption and memory access cost men-

tioned above or by considering other relevant factors,

for instance, parallel processing or how to use current

multi-core architectures effectively.

• Exploring the suitability of next-generation AI acceler-

ation devices and electronic components, not just for

the sake of determining which alternative is more

optimal for the problem of interest but also to explore

additional questions of interest such as: (i) to what

extent their joint exploitation is possible and, if so, what

specific benefits this would bring in terms of efficiency

or the extent to which it allows for easing computa-

tional constraints and thus increasing accuracy; or (ii)

how much their use impacts energy consumption.

• Assessing whether the lightweight-detector-related

methods discussed are able to exploit the capabilities

of the modern acceleration hardware and, if necessary,

further investigating new techniques for devising mod-

els that can effectively make use of such specific

hardware configurations.

• Simplifying and streamlining the design of architectures

for on-device vision-based detection solutions. In recent

years, a number of studies have been developed to

automate the search for solutions, given a space of

potentially desirable optimization techniques and

parameterizations. Such techniques, collectively known

as NAS, have already shown enormous potential

[112, 138–144] and are undoubtedly a promising

approach to automatically synthesize more optimal

network designs, incorporating hardware-specific met-

rics such as latency and power consumption into the

objective function that guides the solution search.

• Benchmarking the performance of light-weight object

detectors in a greater-fairness context or configuration.

While it may be impractical to compare all recently

proposed detectors, we believe it would be of great

interest to the research community to establish a

common evaluation framework for the most represen-

tative detectors in order to execute a unified

comparison.
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