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Abstract

Convolutional neural networks have pushed forward image analysis research and computer vision over the last decade,
constituting a state-of-the-art approach in object detection today. The design of increasingly deeper and wider architectures
has made it possible to achieve unprecedented levels of detection accuracy, albeit at the cost of both a dramatic com-
putational burden and a large memory footprint. In such a context, cloud systems have become a mainstream technological
solution due to their tremendous scalability, providing researchers and practitioners with virtually unlimited resources.
However, these resources are typically made available as remote services, requiring communication over the network to be
accessed, thus compromising the speed of response, availability, and security of the implemented solution. In view of these
limitations, the on-device paradigm has emerged as a recent yet widely explored alternative, pursuing more compact and
efficient networks to ultimately enable the execution of the derived models directly on resource-constrained client devices.
This study provides an up-to-date review of the more relevant scientific research carried out in this vein, circumscribed to
the object detection problem. In particular, the paper contributes to the field with a comprehensive architectural overview
of both the existing lightweight object detection frameworks targeted to mobile and embedded devices, and the underlying
convolutional neural networks that make up their internal structure. More specifically, it addresses the main structural-level
strategies used for conceiving the various components of a detection pipeline (i.e., backbone, neck, and head), as well as
the most salient techniques proposed for adapting such structures and the resulting architectures to more austere
deployment environments. Finally, the study concludes with a discussion of the specific challenges and next steps to be
taken to move toward a more convenient accuracy—speed trade-off.
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1 Introduction

Despite being widely studied over the last three decades,
object detection still represents a highly complex problem
and remains an uphill challenge of great interest in
research. Nowadays, classification and localization of
specific targets or object instances on images and videos
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transcend computer vision and constitute both a central
research topic within the scientific community, and a
technical approach is increasingly explored and exploited
by industry. It is possible to find a fair amount of related
works in the existing literature on application domains as
diverse as posture estimation [1], pedestrian [2], and face
detection [3], or human behavior recognition and analysis
[4], among others. Moreover, outside academia, the recent
adoption of cutting-edge object detection methods and
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techniques has enabled professionals in the corporate field
to improve the efficiency and effectiveness of robots and
cyber-physical systems in general, due to a more sophis-
ticated perception of the environment. It has also had a
very significant impact on a considerable number of prac-
tical use cases closer to the general public, and primarily
associated with mobile applications and real-time support
as well as monitoring systems such as advanced driving
assistance systems (ADAS) [5] or drone surveillance sys-
tems [6].

Although first presented in 1989 by LeCun et al. [7],
convolutional neural networks (CNNs) have emerged over
the last decade as a major driver of progress in image
analysis and computer vision, delivering state-of-the-art
results in terms of accuracy. Though statistical classifiers,
such as support vector machines (SVM) [8], Random
Forest [9], Adaboost [10], or traditional neural networks,
were considered the standard in computer vision for many
years and had a leading role in object detection tasks, and
the relatively recent breakthrough of deep learning (DL)
techniques represents an unquestionable leap over previous
object detection research, enabling not only the detection
of objects in more complex situations but also the simpli-
fication of the design process of pursued algorithmic
solutions. In this regard, there has been a clear paradigm
transition from a handcrafted approach for the conception
and design of detection techniques with a strong focus on
feature engineering to a streamlined model based on fully
automatic feature extraction. Thus today, CNNs represent a
comprehensive detection solution that, due to their ability
to exploit both spatial and temporal correlation of input
data, enables feature representation learning to be carried
out directly with no need of domain expertise, an essential
requirement to design feature extraction algorithms such as
shift invariant feature transform (SIFT) [11], histogram of
oriented gradients (HOG) [12], or local binary patterns
(LBP) [13], which are omnipresent among the more clas-
sical approaches.

The aforementioned qualitative leap forward brought by
the advent of CNNs in computer vision [14] did not come
without cost. As has been the case with essentially all DL
techniques, convolution-based networks are also excep-
tionally computationally demanding and require a large
memory footprint. The exploration of innovative vision
approaches in general and the design of novel CNN
architectures in particular, promoted by challenges such as
the Imagenet Large Scale Visual Recognition Challenge
(ILSVRC) [15] and Pascal VOC [16], have been primarily
aimed at achieving better performance in visual recognition
tasks, concentrating efforts on outperforming the latest
state-of-the-art accuracy. This has meant a tremendous
boost for the field and a historically unprecedented evolu-
tion of CNN. On the other hand, it has also led to
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increasingly complex architectures. CNN models such as
VGG-16 (138M parameters) [17] or RetinaNet (built on
ResNet-152 [18], with 60M parameters) [19] have been
able to achieve high accuracy levels, but they typically rely
on complex structures and work with multidimensional
parameter spaces, resulting in a large amount of computed
intermediate products and output values. The path toward
more accurate CNNs has also involved, throughout much
of the last decade, the design of progressively deeper
architectures and hence an ever-greater number of feature
maps, resulting not only in a dramatic increase in the
number of parameters, as just noted, but also in the number
of multiply-adds (MAdd) operations [17, 20].

However, recent hardware progress has shown adequate
power to successfully meet the above-mentioned needs.
Cloud-infrastructure-based configurations powered by
graphics processing units (GPUs) clusters have become the
standard in DL research. Conceived as highly scalable
systems with access to potentially unlimited resources, they
can accelerate both CNN inference and training on dedi-
cated servers, fully or partially taking on the required
computational load and thus relegating user-level devices
to mere data-entry and result-presentation terminals
[21, 22]. Nevertheless, this model presents certain limita-
tions in terms of response speed, availability, and security
[23-31], which is why it might be inadequate in scenarios
where system response time must be as short as possible, in
austere contexts with limited communication or computa-
tional resources, or even in cases where data privacy is a
hard requirement. More specifically:

e Increase in latency, i.e., the response time of the system,
does not harm detection accuracy, but it can lead to
significant degradation of the experience [24]. Offload-
ing processing tasks to a remote machine adds to
inference time—that is, trained model execution time—
the amount of time devoted to image encoding and
transfer, consequently generating the perception among
end-users of higher slowness in the whole process
[23, 25, 28].

e Connectivity between a terminal device and the server-
side is crucial. A decent number of today’s applications
and cyber-physical systems, the latter designed as
distributed infrastructures and oriented to mobility
contexts, are based on terminal devices that strongly
rely on wireless communications. While providing
ubiquity to detection solutions, this type of connection
is less robust than wired alternatives [27]. Thus,
depending on factors such as the reception signal
strength, the environmental conditions, or the location
of the device itself, among others, the connection can
experience substantial speed fluctuations or, in the
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worst case, connection drops, hindering and interrupt-
ing computations offloading on the cloud [30].

e Client-server data exchange inherently involves secu-
rity and user data privacy concerns [26, 31], both in
data transmission, which can be affected by illicit
captures, and data persistence on the cloud infrastruc-
ture, a potential open gate to unauthorized access.

In recent years a novel DL trend named On-Device
Machine Learning has emerged as an alternative to the
cloud approach, constituting a potential solution to the
different problems just pointed out. This trend can be
framed, from a technological perspective, within the so-
called edge computing paradigm, and encompasses a whole
new set of techniques and technologies that enable DL
solutions to be deployed on low-power, energy-constrained
terminal devices. Although we include both next-genera-
tion mobile and embedded devices in the latter, for brevity,
we will refer to them jointly as edge devices throughout the
paper, following [32]. Inference is offloaded on the ter-
minal device, alleviating the computational load on the
server-side, the data traffic between endpoints and the
associated latency, but also incorporating to terminal
devices a layer of intelligence capable of providing users
with a smoother and better-tailored experience, without
compromising data integrity. This demand for higher per-
formance in models deployed on edge devices is reflected
in the need of more sophisticated hardware systems and
more complex CNN models.

Deep neural network (DNN) acceleration hardware such
as application-specific integrated circuits (ASICs) [33, 34],
GPUs [35, 36], and field programmable gate arrays
(FPGAs) [37-40] are already part of the technological
landscape of mobile and embedded devices and have pro-
ven to considerably speed up mathematical computations
in the latter while providing a good balance with respect to
their intrinsic power consumption constraints. However,
the performance achieved in most cases is still insufficient
and far from the pursued real-time, revealing the need for
an alternative approach focused on the software side.
Previous studies carried out along these lines have focused
on the possibility of bringing artificial intelligence closer to
devices with limited resources. Those works explore a
possible decrease in both the inference time and memory
size of DNN models, not only through better exploitation
of device hardware capabilities but also, and mainly,
through the design of more compact and efficient models
despite the limitations. With specific regard to this last
point, there has been a very prolific scientific production
during the last 5 years that has resulted in a great diversity
of reported approaches. Those approaches can be classified
into two distinct categories:

e CNN compression Mainstream practice focused on the
optimization and size decrease in an existing network
by removing potential redundancy in model parameters.
This approach comprises widely known model com-
pression methods such as data quantization [41, 42],
network sparsification [43, 44], network pruning [45]
and knowledge distillation [46].

o Lightweight CNN design Relatively more recent
approach [47] that, as the name itself suggests, pursues
the creation of new efficient architectures from the
ground up [48-52], based on novel less costly convo-
lution operation types including: (i) methods that
operate at the filter channel level and can reduce the
number of parameters, such as group convolutions
[50, 53-55] and depth-wise separable convolutions
[47, 48], and (ii) techniques that act on the spatial
dimension of filters to improve parameter efficiency,
such as low-rank filters.

Moreover, due to the remarkable ongoing scientific efforts,
it is already possible to find a fair number of surveys in the
computer literature aimed at introducing, analyzing, and
comparing the more relevant related research, in order to
shed light and put into perspective the extraordinary
amount of recently published contributions. We identify
studies published over the last 4 years (2017-2020) from
different levels of abstraction, explore the use of machine
learning techniques on terminal devices [32, 38, 56-58],
and also publications explicitly circumscribed to the
detection problem, that comprehensively review the most
salient issues concerning the current state-of-the-art
[59-65]. More specifically, in the first group, we can find
summary-oriented works that provide an overview of
recent progress in DNN acceleration focused on both
(i) effective methods for network compression and opti-
mization tasks and (ii) the different hardware solutions and
software frameworks jointly conceived for that purpose.
The second group brings together, as pointed out, publi-
cations that review the most significant recent DL-based
efforts—more specifically, based on CNN—in object
detection, introducing and analyzing the detection algo-
rithms and frameworks that have emerged as milestones in
the search for higher accuracy, and also covering topics
such as (i) underlying architectures [61, 63] (ii) topology-
specific innovations for increasing the representational
capacity of CNNs [64], (iii) challenges still pending in the
field [60, 63], (iv) methodologies and strategies best suited
for training [60, 63] (v) common use cases or application
domains [61], and (vi) evaluation metrics [60, 63].
Although the referenced works address a broad spec-
trum of relevant topics regarding both the search toward
more efficient DL techniques and the design of more
accurate detection solutions, there is still no work of this
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nature in the literature providing a detailed overview of
recent object-detection-oriented compact CNN architec-
tures that, beyond simply pursuing higher accuracy, have
been conceived from scratch within the on-de-
vice paradigm and aim to bring the detection process closer
to resource-limited hardware platforms. This paper pro-
vides a comprehensive review of the foremost lightweight
CNN architectures specifically designed for generating
efficient models, directly deployable on edge devices and
characterized by a proper speed-accuracy balance and
contained energy consumption on inference time. More
specifically, the main objective of this work is to provide
the reader with a structured and detailed presentation of the
main approaches and techniques developed in that line, as
well as the primary features and more significant design
decisions that have guided the conception of such light-
weight architectures. The aim is to provide machine
learning professionals interested in developing specific
detection-based applications for edge devices, an overview
to be used as a starting point or help guide; and to delve
into the techniques and structural principles underlying the
most popular current compact CNN architectures, in order
to create a solid foundation, among researchers and in
academics, necessary for a steady progress toward true
real-time performance.

In particular, the review focuses on object detection
frameworks that, conceived as convolutional neural net-
works (CNNs), have been designed from scratch according
to the on-device paradigm. In the literature, it is possible to
find alternative approaches such as Transformers [66] and
Multi-layer Perceptron [67] that tackle the object detection
problem as well and have proven to yield high performance
in this regard. However, to the best of the authors’
knowledge, such approaches are very recent, and they have
not yet found their way into the on-device corpus. For this
reason, the study remains limited to detectors built on CNN
architectures. The on-device paradigm itself and its rela-
tively short lifetime represent highly restrictive filtering
considerations in the source discovery process and have
shaped the keyword list used to find related articles and the
inclusion/exclusion criteria adopted for determining the
eligibility or degree of interest of such works. As far as the
keywords are concerned, they were carefully selected
according to the research objectives, seeking to obtain
eminently relevant papers while ensuring none of them
were left out of the search results. Specifically, for the
various queries made, the term “object detection” was used
together with the following keywords: “on-device machine

learning”, “embedded machine learning”, “on-device
intelligence”, “on-device AI”, “TinyML”, “resource-
constrained machine learning”, “edge AI”, “mobile
machine learning”, “embedded AI”, “compact neural

network”, “portable neural network”, “energy-efficient
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deep learning”. The list of results initially obtained was
further refined, excluding works based on the application of
compression techniques to existing models rather than on
the design of compact and efficient architectures deploy-
able on low-resource devices, and also omitting contribu-
tions outside the scope of interest either because the
approach proposed fell outside the on-device paradigm
(lack of experimentation or results reported in that direc-
tion), or because of the nature of the data handled (3D point
clouds [68, 69], and RGB-D images [70, 71]). Lastly, after
an in-depth reading, 37 papers were selected and finally
used as the core of this study.

The rest of the paper is structured as follows. Section 2
provides context to the study carried out, briefly presenting
some of the most relevant milestones in the recent evolu-
tion experienced by CNN-based object detectors, charac-
terizing the different components that integrate the
underlying architecture of those systems and thus estab-
lishing the theoretical foundations necessary for a better
understanding of the rest of the document. Section 3 pro-
vides a comprehensive analysis of the architecture of the
different lightweight detection frameworks present in the
literature, with special emphasis on the review of ultra-
compact CNN networks due to their particular relevance as
the backbone of detectors. Finally, Sect. 4 summarizes the
observations drawn from state-of-the-art and identifies
research challenges to be addressed in future work.

2 Toward efficient CNN-based object
detection

The design of more efficient and effective detection
frameworks has become one of the main objectives pur-
sued in object detection over the last 5 years. Computa-
tional cost reduction in traditional detectors and accuracy
preservation have guided the search for solutions carried
out in recent years by the community of computer vision
experts, scientists, and other professionals. This has led to
the development of several techniques and methods based
on CNN—for instance, Single Shot MultiBox Detector
(SSD) [72], You Only Look Once (YOLO) [73-77], Faster
R-CNN [78], Deeply Supervised Object Detectors (DSOD)
[79], RetinaNet, RefineDet [80], or CornerNet [81]—which
have shown promising performance in image-based target
localization and classification tasks.

In this regard, two-stage detectors have maintained a
leading role in the object detection application domain
almost since R-CNN was first presented in 2014 [82], in
large part due to the remarkable results provided by
frameworks such as Faster R-CNN. More specifically, the
integration of a Region Proposal Network (RPN) [78],
responsible for generating Region of Interest (Rol)
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proposals in the inner configuration of detectors, has made
it possible to reach a very high level of accuracy. However,
despite multiple efforts to increase detection speed, such as
Light-Head R-CNN [83], by simplifying or reducing Rol
computation and thus lightening the detection head, region
proposal generation has been an insurmountable bottleneck
for obtaining less computationally expensive models. For
this reason, many authors interested in the search for more
efficient solutions have turned their work toward the
exploration of unified detection strategies instead of
intensifying efforts and further deepening the optimization
of the different components that assemble region-based
pipelines.

This unified or single-stage approach gives its name to a
set of techniques that model object detection as a simple
regression problem, bringing together, in a single step, the
prediction of both the areas of potential interest in the form
of bounding boxes (localization) and the class names of the
different searched objects (classification). Adopting such a
simpler and more efficient localization mechanism has led
to a transition to a more structurally reduced overall
pipeline configuration, resulting in a less bulky architec-
ture, conceived as a single feedforward neural network
capable of clearly surpassing the inference speed offered
by two-stage detectors, albeit at the cost of a substantial
accuracy reduction. Despite this negative impact, archi-
tectures such as SSD [72] and the original version of
YOLO [84], both leading exponents of this paradigm,
represent a recent milestone of particular relevance as far
as macroarchitectural design and detection pipeline sim-
plification is concerned, and have been enormously suc-
cessful at conquering much of the space of interest
occupied by two-stage frameworks until relatively recently.

The one-stage pipeline model has undoubtedly been a
major improvement in terms of efficiency, successfully
alleviating the complexity of previous state-of-the-art DL-
based detection alternatives. However, the structural opti-
mization carried out for this purpose has been relatively
conservative, and special care has been taken to avoid
harming the accuracy of the resulting frameworks. Thus,
despite effectively reducing the latency associated with the
detection process, the unified pipeline represents an evo-
lution of detectors still unsatisfactory for deploying this
type of system in low-power target devices due to the
significant computational complexity and large size of the
derived model. As shown by the analysis carried out in
Sect. 3, this approach constitutes the primary reference or
base on which modern lightweight object detection archi-
tectures are built.

To that end, it is necessary to strengthen efforts to move
toward a better speed-accuracy trade-off, exploring and
developing techniques able to soften the aforementioned
negative effect on the accuracy values derived from the use

of compact architectures, as well as approaches that make
progress in conceiving more expressive and thereby cap-
able detection-oriented networks. Furthermore, it will be
just as relevant as the nature or focus of the required
modifications to comprehensively approach the structural
optimization process, bearing in mind both the different
specificities of the object detection problem and the sin-
gularities of the three components that comprise the
detection frameworks.

Requirements of techniques designed ad hoc for
domain-specific vision applications, including object
detection, have traditionally received a treatment that could
be qualified as auxiliary, subject to the work and progress
made on general-purpose approaches. Although leveraging
and operating on CNN models have made it possible to
surpass the traditional performance of vision-based sys-
tems, due to their sophisticated ability to learn rich repre-
sentations from image data, those models are typically
algorithmic solutions based on vision-generic approaches
mainly aimed at improving accuracy and speed in classi-
fication tasks. Consequently, they might show significant
mismatches with respect to the needs derived from the
object detection process, in some cases even leading to
conflicts between the design principles underlying the
object detectors and those characterizing the more generic
classification-oriented networks.

Object detection relies particularly on the standard
CNN-based approach [82], built on the design principles
introduced by the seminal work of Lecun et al. in 1998
[85], such as the gradual decrease in the spatial dimensions
in feature maps as the network deepens, or the generation
of high-level features due to the feedforward communica-
tion of high-resolution convolutions located in shallow
layers of the network, with low-resolution convolutions
embedded in deeper areas. In turn, detection extends object
classification with several localization-specific challenges
such as scale variation or small object detection. Those
challenges, in general terms, require a higher degree of
expressiveness from the CNNs that define the inner struc-
ture of detectors almost entirely. Moreover, regarding
features, greater expressiveness also implies a demand for
multilevel feature processing, necessary for accurate visual
recognition, or the exploitation of high-level features with
better semantic quality to enrich low-level features.

Beyond an optimal trade-off able to successfully satisfy
the different needs derived from the duality of the object
detection problem, it will be equally necessary to explore
the structural and operational particularities of the three
elements that compose the architecture of the detection
framework: (i) the backbone, also called “base network” in
SSD [72], responsible for the extraction of semantic fea-
tures from the images supplied as input to the detector; (ii)
the neck, introduced in the architecture as an intermediate
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element intended for the refinement of the properties
extracted in the backbone, mainly through multilevel
properties fusion; and lastly, (iii) the head, responsible for
class prediction the bounding box regression. Figure 1
provides a schematic representation of the standard archi-
tecture of modern unified detection systems, depicting how
the three components are arranged together and indicating
which role they play in the detection pipeline. In addition,
for each of the components under consideration, details are
given on which properties of the resulting detector are
impacted the most by their configuration as well as which
aspects of the latter are more relevant.

As its name suggests, the backbone is the most relevant
element in the architecture of an object detection system,
mainly because of its predominance within the overall
structure of the system but also because of the impact that
some of its aspects or characteristics have on the overall
performance of the detector. The backbone’s ability to
extract representative properties and its expressiveness
contribute significantly to the general framework’s accu-
racy, while salient topology-specific features, such as net-
work depth or layer size in both the spatial and channel
dimensions, bound or set the requirements for the resulting
detection system in terms of computational cost and
memory space. Moreover, the backbone’s appeal as an
individually capable CNN network, able to perform clas-
sification tasks on its own, transcends object detection
domain, and constitutes a valuable approach for a fair
number of vision-based problems such as instance seg-
mentation or object tracking, among others. That is why,
traditionally, and still today, computer vision researchers
have commonly directed their efforts to the exploration and
design of new CNN architectural alternatives regardless of
the specific problem addressed. While the majority of these

Input

Feature extraction
Image

Backbone

Derived model size
* Derived model latency | - Number of filters
- Classification accuracy | - Filter dimensions

- Receptive field size

Feature representation enhancement

- Network depth * Localization accuracy

alternative approaches have been conceived as generic
solutions, they are also used, nearly straightforwardly, as
techniques and methods to devise and improve detection
systems’ backbone.

With regard to the architecture, the neck is also a CNN
designed to expand or refine the features initially extracted
by the backbone in order to mitigate the mismatch or gap
in terms of power representation between the features
generated by the latter and those required to obtain an
adequate level of accuracy in object detection. Recent
approaches address this problem and explore the integra-
tion in detection frameworks of new building blocks or
multi-scale subnetworks, initially conceived in diverse
vision-related application domains such as human pose
estimation, face recognition, or instance segmentation, to
improve the network’s spatial awareness. More specifi-
cally, those new structural components are assembled into
the neck to obtain higher resolution and semantically richer
representations, not only to enable multi-scale object
detection but also to improve the detection—primarily
localization—of such objects in complex situations by
leveraging the use of feature maps with different scales and
the fusion of high and low-level features. Existing literature
includes a considerable number of works [72, 79, 86-88]
that address the problem described and propose different
methods of joint exploitation of multiple CNN layers to
improve detection accuracy. Among them, SSD [72] and
feature pyramid network (FPN) [86] probably stand out as
the two most paradigmatic approaches.

The very nature of CNNs and the gradual subsampling
performed across their layers as the network depth
increases produce a pyramid-shaped multiscale feature
map structure in which higher layers have both larger
receptive field size and higher semantic richness, while
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Fig. 1 Standard architecture of modern one-stage object detection frameworks

@ Springer



Neural Computing and Applications

lower layers have a smaller receptive field size and,
therefore, higher resolution but lower semantic sensitivity.
SSD extends the base CNN network acting as backbone
within the detector’s architecture by appending a stack of
additional convolution layers of different scales, where
each layer is devoted to target-related predictions for a
particular scale, thus enabling multiscale detection. It has
shown relatively poor performance, however, in small
object detection. High-level feature maps with a large
receptive field are used to predict large targets; in contrast,
low-level feature maps have a small receptive field and are
able to predict small objects. The absence of a feature
fusion mechanism makes it impossible to take advantage of
the complementary nature of the features coming from
different layers, which decreases the semantic richness
necessary for small target detection.

FPN [86] is able to integrate semantic information in
multi-scale feature maps due to an architecture composed
of a bottom-up and a top-down path. In particular, the top-
down pathway is responsible for building higher resolution
feature maps from an initial semantically rich map. Newly
generated feature maps, though semantically strong, are not
appropriate for an accurate localization due to the negative
impact of both the upsampling and downsampling opera-
tions used in the process. For this reason, as a mechanism
to help with or improve localization, lateral connections are
then added between the reconstructed feature maps and the
corresponding original ones. However, although FPN has
proven to be an effective and straightforward option, layer-
by-layer feature fusion is not an optimal strategy and
penalizes network efficiency in situations where the num-
ber of feature maps to be fused is very high. Fortunately,
some design alternatives have emerged, intending to miti-
gate that deficiency by pursuing more efficient fusion
strategies. An example of those alternative approaches is
FSSD [89], which replaces FPN’s layer-by-layer fusion
with a single aggregation of the different multiscale feature
maps available initially based on a less costly concatena-
tion operation.

Finalizing the typical workflow in detection systems, the
features extracted by the backbone network and then
refined by the neck are passed as input to a series of pre-
diction layers in charge of classification and bounding box
regression tasks, both necessary for generating the output
of the detection process. Whereas components involved in
feature extraction have experienced a rapid evolution,
resulting from significant research efforts that have tradi-
tionally led to more accurate convolutional architectures
and, more recently, to more compact and efficient net-
works, quite the opposite has happened with the detection
head, which is still today relegated to a minor role in the
spotlight. That does not mean, however, that there has been
no progress. The transition to a more compact architectural

style, driven by the advent of single-stage detection mod-
els, has also been reflected in the organization and nature of
the prediction layers attached to the end of the detector.
Specifically, the head has been gradually slimmed down,
transitioning from a traditional structure [78] consisting of
two sibling branches, each with expensive fully connected
layers, to a lighter architecture consisting entirely of con-
volutional layers capable of jointly performing class esti-
mation and bounding box regression.

The enhancement of a single part within the detection
system is typically insufficient to boost the joint potential
of the three component assembly. A single-component-
focused search for new strategies or specific improvements
may lead to a result not necessarily appropriate [90]. For
this reason, an ill-fitted joint configuration of the backbone
and the detection head, for example, or even the typical
detector creation approach based on CNN designed for
classification tasks, may not be optimal for object detec-
tion. Aware of this, authors have commonly approached
the design process of new lightweight detection frame-
works comprehensively, exploring different approaches at
the structural and operational level in order to improve
performance and reduce the complexity of some, if not all,
of the architecture components, in compliance with the
well-known memory and computational limitations
imposed by edge hardware platforms. Pursued solutions go
beyond the sole adoption of a one-stage-detector
macroarchitecture as a starting point or the integration of a
shallower and simplified network model as the backbone in
the detection pipeline. They are built instead upon an in-
depth analysis exercise at both the micro and macroarchi-
tectural levels, diversifying efforts to tweak or fine-tune the
components in the detection system throughout a continu-
ous process of search for balance between latency and
accuracy.

3 Object detectors for resource-constrained
devices

This section provides a detailed review of the main mile-
stones or most representative approaches developed in
recent years to bring the process of object localization and
classification to devices with limited computational and
memory resources. We will start this review with a holistic
view of the main detection frameworks collected from the
related literature. In total, Table 1 lists thirty detectors
conceived as CNNs with small size (number of parameters)
and modest computational complexity (computational
volume). Specifically, for each detection framework ana-
lyzed, we will examine in detail the different techniques or
methods adopted at the architectural level for their con-
struction, not only pointing out which main building blocks
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or network architectures are chosen as the main constituent
elements for each of the different stages or components of
its structure, but also comprehensively analyzing which
specific topological adjustments or improvements were
applied to each of the parts to achieve the desired effi-
ciency-accuracy trade-off.

Given the relevance of the backbone as the detection
system’s key structural element, we will spend a large part
of the section studying the main architectural approaches
and design principles that have led to the development of
lightweight yet expressive CNNs appropriate for the
extraction of features with the quality required to effec-
tively perform bounding box regression and class predic-
tion, both of which are tasks involved in the detection
process. However, this review will not be limited to the
backbone networks listed in Table 1. Supported by a sec-
ond table (Table 2), we will extend the discussion of those
networks beyond the items presented in the first table,
analyzing the most relevant general-purpose CNN archi-
tectures designed from scratch for mobile or embedded
devices. Although, as we will see, most of them have not
been used so far as part of any detection framework, they
all represent perfectly valid approaches for this purpose.
Moreover, due to their convolutional nature, they are based
on structures and topological principles similar to those
comprising the foundation of detectors, so their incorpo-
ration into the analysis will complement the global dis-
cussion, providing further relevant information, both at the
micro and macroarchitectural level.

3.1 Lightweight object detection frameworks

The data collected in Table 1 provide context to the current
mobile scenario, chronologically locating recent research
efforts focused on studying and creating lightweight object
detectors in the last 5 years. In a first superficial inspection
of the works analyzed in the table, focusing exclusively on
the first three fields that provide more general data, it is
possible to identify certain aspects of interest that outline
the evolution of this new trend in the last few years.
Specifically, the increasing number of related papers pub-
lished (from only two in 2017, to fifteen in the last year and
a half) clearly highlights a significant growing interest in
the application of this new on-device paradigm to object
detection. Those numbers further confirm the massive
adoption of a single-stage pipeline configuration as the
predominant architectural model, with ThunderNet [91]
being the only two-stage detection framework of all the
lightweight detectors and base detection frameworks listed.

Maintaining the same level of abstraction, but extending
the analysis on Table 1 to the columns that contribute with
specific data regarding each of the components that com-
prise the architecture of the different detection systems

considered, we see that there is a marginal number of
papers, namely MAOD [92], CornerNet-Squeeze [93], and
LightDet [94], that explore the joint application of adjust-
ments on backbone, neck, and head. The remaining
majority is evenly split between work that explores
enhancements on two of the elements that form the
detection system in its different permutations [91, 95-106],
and approaches that choose to focus on just one component
[48, 107-117]. The main object of interest in the latter case
is the neck, and, to a lesser extent, the backbone. If we
delve deeper into this classification and extract the number
of studies per individual component examined, it is pos-
sible to establish a ranking or prioritization of the three
based on the level of attention they received in the different
studies considered. The resulting list, in decreasing order of
interest, is as follows: neck > backbone > head. There-
fore, it is clear both that the emphasis on the development
of specific approaches is aimed at improving the neck and
the relative absence of actions focused on the detection
head, whose structure, in general terms, is directly defined
by the detection framework used as base macroarchitec-
ture. The remainder of the section will include the main
contributions made in relation to the three components in
the last few years.

3.1.1 Neck-specific design considerations

We will now increase the level of detail of the analysis to
focus the discussion on Table 1, dealing with specific
architectural aspects of the different networks used as neck
within the several ultra-compact detectors studied.

3.1.1.1 Classification according to the multiscale-detection-
enabler mechanism used We start the discussion with the
Base Network field, which contains the most relevant CNN
microarchitectures adopted as base structure for designing
the final actual neck architecture. Setting aside the RPN
intended for the synthesis of Rol within two-step detection
frameworks and not for the enhancement of the represen-
tational power of the features involved, it is possible to
group those microarchitectures into three differentiated
categories or approach types according to the type of
multiscale-detection-enabler mechanism used: (i) the
exploitation of a pyramidal feature hierarchy, (ii) the
recovery of high-resolution representations from low-res-
olution representations, and (iii) the maintenance of high-
resolution representations throughout the entire network.
This classification does not include HyperNet [87], more
specifically, the Hyper Features extraction network used as
neck. Although it relies on the fusion of different feature
maps, thus being excluded from (i), the performed feature
aggregation does not involve the generation of higher
resolution  representations, making it also non-
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categorizable in (ii) or (iii). Setting aside this exception, we
will now discuss the specific features that characterize each
of the three approach types indicated, and we will also
address specific aspects concerning the different related
architectures to clarify the underlying design principles.

i. Pyramidal feature hierarchy This is the simplest
approach of the three categories identified, purely focused
on detecting objects of interest with different sizes due to
the exploitation of pyramid-shaped multiscale feature
maps. It is represented in Table 1 by the SSD and SSDLite
[48] detectors. SSD, as mentioned in Sect. 2, constitutes
one of the more paradigmatic architectures within this
approach, while SSDLite simply represents a lighter ver-
sion of SSD, explicitly conceived for mobile devices by
replacing conventional convolution operations with depth-
wise separable convolutions, a practice that has been
extensively adopted for alleviating the computational
complexity of traditional CNNs, as shown below. Aside
from this particular point, SSDLite does not introduce
additional architectural concepts of interest beyond those
already materialized in the original SSD architecture.

ii. Recovery of high-resolution representations This
approach involves the fusion of multiscale feature maps to
solve the lack of accuracy problem when detecting small
objects, upsampling low-resolution representations to
recover high-resolution representations progressively. This
category possibly encompasses the most widely used neck-
specific methods among those reviewed, covering main-
stream pyramidal architectures such as FPN ([86] or
Hourglass [88], more compact alternatives such as Depth-
wise FPN (D-FPN) [95]—which incorporates more effi-
cient depth-wise convolutions into regular FPN—or
YOLOV3-Tiny’s neck [120], and even more differentiated
proposals such as NAS-FPN [111]—exploiting feature-fu-
sion building blocks automatically derived using Neural
Architecture Search (NAS)—or FSSD [89]—an improved
version of the SSD architecture. Among the approaches
just mentioned, FPN is undoubtedly the most representa-
tive architecture for pyramid-like feature representation
generation in object detection. According to the data pre-
sented in Table 1, FPN represents the architectural option
that has been selected by more authors (ten papers out of a
total of fifteen, including the D-FPN and NAS-FPN vari-
ants) as the foundation for building the neck part in the
lightweight detection proposals.

D-FPN and YOLOV3-Tiny’s neck are particularly
interesting, since both of them follow the current on-device
trend of exploring computer vision solutions tailored to
low-power devices. D-FPN shares the same dual-path
architecture as FPN (an initial downsampling stage fol-
lowed by a second inverse stage) but it also succeeds in
reducing upsampling path’s computational complexity by
exploiting a more optimal structure consisting of a bilinear

@ Springer

interpolation layer followed by a depth-wise convolution.
With regard to YOLOv3-Tiny’s, the final implemented
network results from a profound structural simplification,
as is the case with the detector’s global architecture. That
structural simplification is performed by means of aggres-
sive optimization practices such as the significant reduction
in both the number of considered scales and integrated
layers on the original YOLOvV3 network [77], or the fusion
of only single-scale features, which is certainly to the
detriment of the semantic richness of the extracted features
and, ultimately, the detection accuracy.

ili. Maintenance of high-resolution representations
Along the lines of the previous approach, this strategy
pursues a convolutional architecture design aimed again at
the generation of high-resolution representations; in this
case, however, communicating those representations
throughout the entire detection network in order to avoid
transitions between high and low resolutions, common in
multiscale approaches. Specifically, High-Resolution Net
(HRNet) [126], the only architecture listed in Table 1
corresponding to this paradigm, goes beyond multilevel
fusion and, as an alternative, proposes taking a high-reso-
lution convolution stream directly as a starting point,
subsequently connecting in parallel one stream per con-
sidered resolution, thus exchanging information between
multiple streams. In this way, multi-resolution fusion can
be performed recurrently, resulting in high-resolution rep-
resentations with great semantic richness and spatial
precision.

3.1.1.2 Classification according to the enhancement type
produced The architectural solutions space just discussed
clearly indicates a strong presence of pyramidal CNN
models, originally designed as building blocks of standard
unified detectors, halfway between the current on-device
approach and the more complex traditional architectures.
Those models, although able to produce better represen-
tations than those generated by ultra-compact networks,
typically feature both a complexity and size impracticable
for systems with modest capabilities, as well as an accu-
racy level lower than what is commonly reached by two-
step detection frameworks. In that regard, the use of a pre-
existing base CNN architecture, even though it is a practice
that can lighten and, in certain occasions, completely
bypass the study and design of specific solutions, stream-
lining the design of new architectures for the neck, does not
itself constitute an optimal solution. As noted in Sect. 2, a
twofold effort to advance in the direction of an improved
speed-accuracy trade-off, with emphasis on techniques for
size and computational complexity reduction so as to
consequently reduce latency (i), but also exploring methods
toward more expressive networks and therefore with
greater detection capacity (ii). Next, we present the key



Neural Computing and Applications

strategies and methods adopted in both directions to obtain
a structure compliant to on-device paradigm’s efficiency
principles, omitting overly specific design details in order
to keep a desired level of abstraction to facilitate the
applicability of the adjustments required in different
architectures or future cases.

i. Size and latency reduction This approach pursues
building network architectures that could result in models
with fewer parameters and lower computational complex-
ity, that is, with smaller size and higher inference speed.
The use of factorized convolutional filters represents the
most paradigmatic mechanism related to this approach
[48, 91, 92, 95, 97, 108, 111], constituting in itself a CNN-
compression-specific subcategory of techniques that
encompasses several lighter and faster variants of the
standard convolution operation such as depth
[48, 91, 92, 95, 97, 111] and group convolutions [108]. In
addition, this group also embraces techniques based on the
integration into the architecture of building blocks such as
attention modules, used in [93] to both reduce the number
of pixels to be processed in region-based detection and
thereby increase the speed of object detectors, and Fire
modules, explored in [96, 108] to, again, lower the number
of parameters while preserving accuracy. Along the same
lines, supplementing the exploitation of such blocks, Wang
et al. [106] report the application of the recent CSP design
[125] to the various structural components of a detector as
a highly beneficial alternative to the more traditional
residual connections able to reduce the number of param-
eters, the computations and the inference time. Finally, this
category also includes more simplistic techniques such as
the direct reduction of the quantity of weights in the net-
work, for instance, removing larger feature maps as in
[107]; the use of layers based on 1x1 filters instead of fully
connected layers to perform predictions [107]; or the
simple optimization of the number of filters used, even if
that involves breaking the ruling microarchitectural
homogeneity in CNN building blocks, as in [96].

ii. Detection performance increase This is a significantly
more heterogeneous approach than the one presented in
(i) aimed at achieving better classification performance but
mainly focused on increasing detection accuracy, espe-
cially in complex applications such as small target detec-
tion. It is possible, therefore, to identify, two differentiated
strategy types: general-purpose methods
[91, 92, 97, 107, 108] applicable for any CNN and
grounded in concepts that shall emerge again in the dis-
cussion of the backbone; and object-detection-specific
methods [91, 94, 97-99, 102-105, 109, 115, 117], pri-
marily focused on improving localization tasks.

Since the emergence of CNNs, there has been a well-
known and long-standing interest, regarding general-pur-
pose methods, in improving the performance of vision-

based systems in classification tasks, exploring solutions
aimed primarily at increasing the representation capacity of
the built networks and, consequently, improving learning
and accuracy. Although many of the actions taken to that
end, such as making the network deeper, are largely
impractical in the on-device context, the underlying phi-
losophy remains completely applicable, and it also con-
stitutes the foundation of a considerable body of more
specific approaches or subcategories seeking lightweight
solutions. As shown in Table 1, various studies can be
found in the literature, such as: [108], which explicitly
seeks to provide CNNs with a better and more efficient
representation learning capacity by leveraging group con-
volutions, as in the referenced work; studies that perform
more simplistic practices, for instance, exploiting larger
convolution filters [91] and removing subsampling layers
[92], to achieve or maintain a large-sized receptive field,
enabling the subsequent encoding of a larger volume of
information; approaches [107, 108] that, for example, rely
on the addition of shortcut connections (residual blocks) in
the network architecture in order to alleviate the vanishing
gradient problem; strategies for increasing nonlinearity,
such as the use of 1x1 pointwise convolution operations
[97] or the use of the Hard Swish (h-swish) activation
function instead of a more standard option such as Recti-
fied Linear Unit (ReLU) [92]; and, finally, mechanisms for
better information flow, such as the aforementioned
shortcut connections [107, 108].

In terms of detection-specific enhancement solutions,
these are usually methods that, based on multiscale feature
maps [98, 109] (essential for the detection of multiple targets
with different sizes), aggregate low-level high-resolution
features with high-level semantic features to achieve greater
semantic richness [91, 94,97-99, 102-105, 109, 115, 117] as
a result. Apart from two specific contributions that propose
efforts directly related to the exploitation of multiscale fea-
tures—increasing the number of different scale levels con-
sidered for the output [98] and using encoder—decoder
structures for feature generation at different levels [109]—
we identify table methods in the lightweight-detection-ar-
chitecture-devoted that are essentially located in the space of
solutions aimed at obtaining more valuable features,
semantically speaking. More specifically, data presented in
the table in this respect create a scenario where the fusion of
multiscale feature maps [94] constitutes the dominant
approach and where related works primarily focus both on
different information transfer and exchange structures,
namely dense connections [103, 115] and inverted residual
blocks [99, 104, 105], and on attention mechanisms, an
approach primarily aimed at extracting more discriminative
features, mainly channel-wise [98, 104, 105] but also
simultaneously at the spatial and channel level [102].
Additionally, several other approaches that also seek to
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improve the network’s expressiveness can be identified, but,
in this case, they are achieved by enriching intermediate
features due to the use of the convolution on dimension-
reduction blocks [97] or by using attention modules to adjust
the feature distribution and thus facilitate the distinction
between background and front features (spatial attention)
[91].

3.1.2 Detection head architectural principles

Twenty-one [47, 95, 96, 99, 100, 102—117] out of the thirty
papers reviewed show no action explicitly focused on the
design of the head for lightweight detectors other than the
study and selection of the base network architecture to be
used. It is possible to go a little further and even state that
there is no trace of apparent activity in this regard since the
different microarchitectures used for this purpose (at least,
the ones reported in Table 1) are merely the structures
proposed as detection head of the corresponding base
detection frameworks. This is even extended beyond this
group of publications that do not address head-specific
enhancements and remains as a constant throughout all the
works listed, with the dual exception of BMNet, which
does not provide head-specific information at all, and
LightDet, which proposes its own microarchitecture con-
ceived from scratch.

Regarding the different architectural alternatives used as
a reference for the design of the head in lightweight object
detectors, Table 1 shows a general scenario very similar to
the one described in the previous point for the neck,
dominated by networks initially conceived as structural
elements of unified detectors, but a scenario that, in this
particular case, features a slightly broader range of options.
An initial superficial exploration of the data collected in the
table makes it possible to infer a predominant network type
or profile characterized not only by its unified architecture
but also by its ability to detect objects with different scales
and aspect ratios due to multiscale feature processing and
the use of anchor boxes in the detection process. Thus,
fitting the profile outlined, a total of six base head designs
(originally part of SSD, SSDLite, YOLOv3, YOLOvV3-
Tiny, RetinaNet, and RefineDet) adopted in eighteen of the
twenty-five works studied can be found in Table 1. There
are also microarchitectural alternatives that do not, albeit
almost marginally, conform to the well-known anchor-
based approach, either because they have been imple-
mented as a part of a two-stage detection pipeline (Faster
R-CNN and Light-Head R-CNN), despite relying on
anchors, or simply because they have been conceived as
part of non-anchor-based detectors (YOLO, CornerNet,
and FCOS [127]).

Regarding any modifications applied to the base archi-
tecture, the two-fold approach already identified during the
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neck-related discussion in Sect. 3.1.1 (and present in the
backbone analysis as well) emerges again. Thus, it is
possible to classify the neck-specific enhancement methods
into the same two categories or approach types: a first
group focused on size and latency reduction (i) and a
second body of techniques with an emphasis on increasing
or at least maintaining detection accuracy to make up for
the potential harm caused in this respect by the techniques
in the first category (ii). Overall, there is a major gap in
terms of prevalence distribution between neck-related
adjustments and those targeting the detection head. More
specifically, the data presented in Table 1 show that there is
an evident polarization of head-centered techniques into
two distinct groups that did not emerge in the analysis of
neck-related approaches. Thus, except for a couple of
papers that can be simultaneously associated with the two
different approach types considered [92, 94], every single
modification can be located in one of the two indicated
solution spaces. That divergence becomes even more pro-
nounced if we take into account the size of those spaces:
quite even for the two groups when it comes to the neck
while significantly uneven when talking about the head.
Furthermore, regarding the latter, the subgroup of methods
that seek to lower computational and memory cost have an
evident prominence (approach embodied by five publica-
tions [48, 91, 93, 98, 118] referenced in Table 1) compared
to the method that encompasses accuracy-centric modifi-
cations (with only two representative works [97, 101] in the
table).

Turning now to specific approaches, we identify in
group (i) strategies that are mainly aimed at reducing the
number of parameters in the models produced, and thus are
able to initially reduce the models’ size, and consequently
in many cases, their computational complexity as well.
Among them we can distinguish techniques eminently
focused on the inner configuration of layers and, therefore,
on the modifications of filter-specific aspects: the use of
depth-wise separable convolutions instead of standard
convolutions [48], the decrease in the number of channels
[91], or the use of smaller-sized convolutional filters
[93, 94]. Also included in this parameter-reduction-ori-
ented subgroup are methods that address more general
layer-related considerations, such as replacing fully con-
nected layers with convolutional layers [118] or simply
omitting a subset of the layers that can be found in the
original architecture [98]. Finally, to complement the dif-
ferent approaches just mentioned, we also associate to
group (i) a different subcategory or approach type that
directly pursues computational complexity reduction, rep-
resented in Table 1 by a single paper [92] that proposes the
addition of dedicated layers for removing the background
of the given input image (suppression of non-useful
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information) to reduce the number of pixels to be
processed.

The second head-specific- category or group (ii) is
monopolized by the exploitation of residual blocks as a
constituent part of the head’s structure [92, 94, 97, 101].
Such an approach is able to both increase the detection
accuracy and contribute to reducing the resulting network’s
memory requirements. Used as an enhancement mecha-
nism also for the neck’s architecture, as indicated in
Sect. 3.1.1, this type of block integrates the so-called
shortcut connections to allow the flow of information
between shallow and late-stage layers and thus keeps the
semantic richness of features [97]. The value of residual
connection goes beyond its accuracy-enhancement ability;
it has also been adopted as the base structure for conceiving
architectural alternatives equally advantageous in terms of
detection accuracy, such as the bottleneck residual block
[101], capable of fusing high-level multi-scale features, the
inverted residuals and linear bottlenecks [92] that enable
increasing the representational power of channel-wise
nonlinear transformations, and a lighter version [94] that,
inspired by group convolutions and comprised of two dif-
ferent branches, leverages channel shuffle to allow infor-
mation exchange between branches.

3.1.3 Efforts for a more efficient backbone

Specifically, concerning the architectures integrated as
backbone in the detection frameworks under examination,
the related data collected in the table confirm the pre-
dominant, but not exclusive, use of simplifitd CNN
architectures. Excluding FRDet [100]—with no represen-
tative data reported in Table 1 about the network or
architecture used as backbone—twenty-four frameworks of
a total number of thirty use a lightweight subnetwork as
backbone. Furthermore, in that group we can identify just
ten distinct alternatives, a number that could be even lower
if grouped into families of detectors: MobileNets
[47, 48, 92, 99, 111-113, 115, 117], ShuffleNets
[91, 94, 97, 104], SqueezeNet [96, 108, 118], PeleeNet
[102, 107], and DarkNet-19 [103, 109, 114, 116]. Google’s
MobileNets emerges as the most dominant lightweight
architectural solution. This observation, although it ignores
configuration or structural efficiency matters (they will be
addressed in the next section), is entirely consistent with
the evolutionary sequence of on-device vision models
reported in the literature, where MobileNets, first intro-
duced in 2017 [47] and with three different versions, stands
as the most mature compact alternative as well as one of
the main drivers of the growing attention generated by
ultra-compact vision models in the research community
during the last few years. Finally, regarding the rest of the
backbone-specific architectures referred to in the table,

apart from the lightweight alternatives, it is possible to
identify a second group that encompasses five standard
CNN architectures [93, 95, 98, 101, 110], where, beyond
the mere intuition of a more specific nature, it is not pos-
sible to infer any pattern that might be of interest in this
analysis.

In a joint review of the several architectures adopted as
backbone and the adjustments applied to them, itis possible to
extract observations that, while not backed by specific metrics
and measurements, provide valuable intuition about the per-
formance and, in general, the suitability of the architectural
solutions proposed. In that sense, even though lightweight
CNNarchitectureshavebeendesignedfromscratch,bearingin
mind the hardware limitations of the target devices, and have
largely succeeded in deriving models of extremely reduced
sizeandcomplexity,theymaystillbeinsufficientorinadequate
solutions depending on various factors such as the hardware
platformandthe applicationdomain. Thisrealityisreflectedin
Table 1, where few studies reportdirectly employing compact
CNN architectures as backbone of the detector
[47,48,97,105,107-109,111,113,118], while afair majority
proposes  specific enhancements or optimizations
[91,92,94, 96,99, 102-104, 106, 112, 114, 116, 117] for the
architectures previously selected. Going into more detail, a
closer look at the data on such modifications allows us to
identify an approach that is fundamentally oriented at obtain-
ing greater precision [91,92,94,99, 103,104,112, 114, 117],
which confirms the need to make up for the accuracy degra-
dation typically resulting from the structural simplification or
miniaturization of the network.

Limiting our focus to the modifications applied to the
architecture selected as the starting point for building the
backbone, it is possible to categorize the strategies and
methods listed in the table into the same two groups we
considered for this purpose in both Sects. 3.1.1 and 3.1.2.
Hence, we identify once again a group of techniques on
one side of the table that respond to a size and latency
reduction approach, and, on the other side, a collection of
methods focused on preserving ad increasing accuracy.

The first group contains techniques basically aimed at
reducing the computational cost of the network. As we
pointed out in relation to the mechanisms designed for
enhancing the head’s structure, it is possible to identify two
different types of solutions within this group according to
the architectural level they operate on. In particular, in a
first microarchitectural subgroup, we find (i) approaches
based again on the exploitation of more efficient variants of
the convolution operation, such as depth-wise convolutions
[95, 98, 102], depth-wise separable convolutions [93, 116],
and group convolutions [98]; and in the second group we
find (i) strategies that have a direct effect on the config-
uration of the convolution filters used in layers or blocks of
the CNN, i.e., both methods targeting the number of
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filters—reducing the number of filters of the first layer of
the network [112], selecting an optimal number of filters
specific per building block [96], and the choice of a better
compression rate for Fire modules [100]—and additional
techniques focused on the number of channels—Ilinearly
increasing the number of channels as the network deepens
[95], or assigning the same number of channels both to the
input and output of residual blocks such as Res2Net [101].
Finally, in addition to the slimming strategies pointed out,
there is a second collection of solutions that address the
same problem, but, through a macro lens, exploring dif-
ferent design options such as the removal of some layers
present in the original architecture, the CSP-ization of the
network [106], the use of Fire modules [93, 103] (with
greater ability to reduce the number of parameters), the
thinning of layers and building blocks [93], and more
appropriate distribution of subsampling layers across the
network [93, 101].

Closing this review of the specific tweaks performed on
the backbone, we can also identify in Table 1 a substantial
number of studies that explore alternatives in the search for
greater accuracy in object detection. Among the options
listed, the residual block structure, based on shortcut con-
nections, is revealed as the most versatile approach in this
regard, constituting an effective solution for increasing
accuracy both in classification and detection tasks and also
the preferred option [98—100, 103, 114] among the several
related alternatives presented in the table. Interest in the
ability of residual connections to enable better feature
propagation and guarantee maximum information flow
across the network goes beyond the residual block. Thus,
that type of connection has been successfully incorporated
into other building blocks, being used, for example, as an
upgrade of Fire modules [100] or as an integral part of the
inverted residual blocks exploited in [99] to achieve better
multi-scale detection. In addition to the detection-specific
techniques for better accuracy just mentioned, the accu-
racy-focused approach also encompasses a second collec-
tion of methods primarily designed to provide better class
predictions. In the table, we can distinguish the following:
(i) approaches that seek to increase the size of the receptive
field due to, among other practices, the use of larger con-
volution filters [91, 104, 117], the insertion of bottleneck
layers for subsampling at different stages of the network
[101], and the use of dilated convolutions in the network
stem [92, 94]; (ii) studies such as [94] or [91], which by
using either dilated convolutions or convolutional filters
with a higher number of channels in early stages of the
network, seek to extract and preserve more low-level fea-
tures; and, finally, (iii) alternatives of a more punctual
nature, already mentioned in the two previous analysis
made correspondingly on the neck and head-oriented
modifications, such as the use of the h-swish activation
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function [112], the inclusion of attention modules to
increase the representation power of the network [92, 117],
or the application of channel shuffle after group convolu-
tions to enable information exchange between groups.

3.2 High-efficient CNN architectures
for backbone build

The analysis of the mechanisms and design strategies
adopted for conceiving lightweight detection frameworks
reveals a constant interest in finding a better trade-off
between accuracy and detection speed. In this context, the
backbone constitutes the key component within the object
detector architecture, not only because it lay downs the
structural guidelines for detectors but also because it is the
component responsible for processing input images in the
first stage of the detection pipeline in order to extract the
features that are supplied later on to the two remaining
components of the detector. Backed by the data collected in
Table 2, we extend the analysis performed in Sect. 3.1.3
with additional lightweight CNN architectures that, despite
not having been used to date for building detection
frameworks in the on-device context, have been entirely
conceived under the design principles of this paradigm. As
in the different subsections included in Sect. 3.1, we will
address the structural specificities of the different CNN
architectures considered, focusing our efforts on identify-
ing the principal techniques and methods applied in each
case.

In a first superficial review of the data included in the
table, which was focused only on the first four columns, it is
possible to derive several general points that add further
detail to the on-device scenario so far presented. The archi-
tectural developments, with the exception of the study from
2016 by Iandola et al. [49], are temporally located between
2017 and 2021, just like the different detection frameworks
above analyzed. Once again, it confirms the chronological
parallelism between lightweight-CNN-specific and ultra-
compact-detector-specific development approaches already
pointed out in Sect. 3.1.3, and it also reinforces the key role
that recent general computer vision progress has played in
developing ultra-compact detection systems. Regarding the
CNN architectures used as a reference for conceiving algo-
rithmic solutions deployable on low-powered devices,
except for a handful of authors working on conventional
CNNs [47, 49, 54, 55, 101, 105, 107, 125, 128, 129], the
mainstream focus has been on exploiting lightweight archi-
tectures as the starting point. Moving on to the detail of the
specific architectures used for that purpose, a family-based
grouping of the several approaches considered can be easily
observed (MobileNets [48, 130-134], ShuffleNets
[50, 52, 135], SqueezeNet [136], and CondenseNet [55])
bearing a strong similarity to the approach laid out in the
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previous section, emerging again as the most used light-
weight architectural solution the MobileNets family. The
residual structure also stands out as the design pattern with
the more significant presence in these architectures, either
directly as part of the Dbase standard CNNs
[54, 55, 101, 107, 125, 128, 129] or as the base structure of
the novel building blocks resulting from the enhancement
techniques and methods applied.

If we turn our attention to the various adjustments made,
the first thing that stands out is the significantly higher
number of enhancements listed in Table 2 for each study if
we compare it with the number of entries that we can see
for the same concept in Table 1. Those data highlight the
complexity of the miniaturization and rational simplifica-
tion of CNN architectures for use on edge devices, as well
as the enormous research efforts undertaken in this line in
recent years, which has made it possible to enhance and
streamline the design of specific on-device solutions in
different vision-related application domains, such as object
detection. There is, however, a gap between the predomi-
nant backbone-focused adjustment type found in Table 1
and the type derived from Table 2. More specifically, in the
first case, we mostly find techniques and methods that
emphasize achieving greater precision for producing a
lightweight backbone design (mainly defined by the base
CNN architecture), yet with an effective expression
capacity to properly act as a structuring element in detec-
tion systems. In contrast, for the adjustments listed in
Table 2, the focus is placed on obtaining more efficient
CNN architectures (in  particular, in seventeen
[47-50, 52, 54, 55, 104, 107, 125, 128-131, 133, 135, 136]
of the twenty-one works under study), also considering
new avenues of exploration in this respect such as the
reduction of memory access cost or the exploitation of
more efficient optimized-implementation-based operations
at the code level.

In terms of scope at the architectural level, we can make a
first classification of the enhancement techniques and
methods considered in two different types of approach: those
operating at the microarchitectural level, i.e., at the inner
level of layers and modules; and those working at the
macroarchitecture level, defining arrangement-specific
aspects regarding the different modules or layers within the
CNN architecture. Beyond the data collected in the Archi-
tectural scope field in Table 2, which aims to capture the
general essence of the several related works listed, a more
detailed analysis of required adjustments provides a much
more accurate picture of the trend in terms of structural
design, especially with such an important body of informa-
tion as the one presented in the table. Thus, although a
majority of microarchitectural adjustments can already be
noted from the data in the Architectural scope field, that
becomes even more evident when the data included in the

Adjustments column are incorporated into the study.
Numerically speaking, only fifteen macroarchitectural
adjustments are identified compared to the fifty observed at
the microarchitecture level. More specifically, the first group
of approaches encompasses strategies to enhance the CNN’s
overall architecture by (i) replacing a certain type of layers or
building blocks with more lightweight alternatives
[49, 131, 132] or variants with greater capacity to maintain or
even increase the expressiveness of the network [101], (ii)
implementing guidelines governing how certain network
properties or elements evolve as it becomes deeper [49, 55],
and (iii) appropriately configuring the connections between
layers or modules [48, 55, 105, 125, 129]. Within the group
of micro approaches, we find a wide range of options that can
be categorized into two distinct subgroups: an initial col-
lection of techniques that focus on convolutional-filter-
specific aspects or properties such as the number of filters
[107], the size of these in the spatial dimension [49], the
number of channels [49, 52, 101, 105, 107, 130], the com-
munication between them [50, 54], or the number of channel
groups [101]; and a second subgroup encompassing methods
targeting the internal structure of layers or modules such as
the exploitation of alternative operations to convolution
[47, 48, 50, 52, 54, 105, 107, 128, 130, 131, 133-136], the
replacement [48] or omission [133] of nonlinearity, or the
application of an attention mechanism [53, 132, 133].
Keeping structural consistency with the different sub-
sections in Sect. 3.1, we establish a second categorization
of the adjustments under consideration, according to the
targeted network-accuracy-specific features or aspects.
Thus, we identify techniques that respond to a size and
latency reduction approach and as well as methods focused
on preserving and increasing accuracy as much as possible.
In the first category, the usage of less costly convolu-
tions—depth-wise convolution [47, 48, 54, 105], separable
convolution [136], and depth-wise separable convolution
[53]—stands out again as the most common approach,
extended in this case by the exploration of other practices
that revolve around additional efficient operations:
replacing costly standard convolutions with memory shift
operations [50, 128] for information fusion, information
exchange between channels, and channel concatenation;
replacing 1x1 group convolutions with a less complex
channel split operation [52]; using simpler linear opera-
tions for partially generating feature maps [133] instead of
fully using convolutions for that; or designing a novel
building block to encode spatial and channel information
with higher efficiency than depth-wise separable convolu-
tions [135]. Precisely in relation to channels and, specifi-
cally, to the introduction of sparsity in the connections, we
identify a second large group of adjustments that encom-
passes some of the strategies already observed in previous
analyses such as the replacement of pointwise convolutions
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with group convolutions [54, 132], but also unseen related
techniques, such as the replacement of pointwise convo-
lutions with channel wise more sparse convolutions [131],
or the conception of a novel type of convolution that
extends group convolution and, in contrast to the latter,
allows an output channel to depend on an arbitrary subset
of input channels, thus obtaining greater computational
efficiency and reducing the number of parameters. Also
related to channels, but in this case, focused on the number
of channels handled, we identify additional enhancement
strategies that pursue channel reduction [49, 136] and some
others that lead to interesting guidelines about what the
ratio between the number of input and output channels
should be in order to lower the computational cost
[105, 107] or the memory access cost [52]. Rounding this
collection of efficiency-focused adjustments, there are
several solutions of a more precise nature, such as
exploiting convolutions with a more efficient software
implementation [107, 136], using more efficient residual
structures [125, 129] or downsampling strategies [105],
omitting h-swish nonlinearity due to its high latency [133],
merging successive element-wise operations, and thus
lowering this type of costly operation in terms of memory
access [52], removing redundant connections [55], using
smaller-sized convolutional filters [49], or replacing heavy
layers with a lighter alternative [49].

Finally, regarding refinement approaches expressly
designed to preserve or increase accuracy, it is possible to
distinguish a considerable range of different techniques,
which are, however, practically evenly distributed.
Specifically, except for just one of the adjustments in
consideration, it is possible to cluster the options listed into
seven distinct groups, each comprising two specific
strategies or methods. We have identified the following
groups in the table: (i) approaches aiming to prevent fea-
ture map size reduction in order to avoid harming the
network expressiveness, either by delaying subsampling,
i.e., moving subsampling layers or blocks to deeper stages
of the network [49], or by using transition layers—com-
posed of convolution and pooling operations—without
compression [107]; (ii) methods that, like channel shuffle
[54] already introduced in Sect. 3.1.3, enable information
exchange between channels, either via more efficient
memory shift operations [128], or in a more straightfor-
ward way replacing point-wise group convolutions with
alternatives that do not block the above-mentioned infor-
mation exchange between groups [53]; (iii) techniques
based on the exploitation of the residual block structure,
adding to the network architecture not only the already
well-known shortcut connections [48], but also dense
connections to boost feature reuse [55]; (iv) strategies that
rely on the gradual increase of the growth rate in dense-
connection-based networks [55, 107] to cost-effectively
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increase feature expressiveness; (v) approaches focused on
the receptive field that, in line with some of the practices
already identified for neck and head refinement, aim to
both increase its size [134] and also generate variations
with different scales [107]; (vi) the integration of attention
mechanisms [132, 133] to boost representational power;
and even (vii) simpler practices such as removing nonlin-
earities in shallow layers to preserve the representativity of
the network as well [48].

4 Learned lessons and conclusions

This paper provides a review of the leading recent research
efforts aimed at bringing historically demanding object
localization and classification tasks to terminal devices
with limited memory and computational resources. In
particular, the study provides a comprehensive analysis of
the main CNN architectures specifically designed to gen-
erate efficient and compact vision models directly
deployable on mobile and embedded devices as part of
real-time object detection software solutions. That is why
we cover in this study the most relevant architecture
strategies and techniques that have been used not only to
enhance the design and configuration of the different
components that comprise this type of solutions—back-
bone, neck, and head—but also and primarily to make them
suitable for more austere deployment environments, are
contemplated in the study.

The backbone is the most critical element in the detec-
tor’s architecture because of its predominance in the gen-
eral structure of the detector as well as its impact on the
performance of the “wrapping” framework. Specifically,
the detection system’s accuracy significantly depends on
the expressiveness of the CNN used as backbone and on
the ability of the latter to extract representative properties.
Likewise, aspects of the backbone’s topology, such as the
depth or size (in both the spatial and channel dimensions)
of the layers, have a strong influence on the final compu-
tational complexity and memory requirements of the
resulting detector. However, even though it has a tremen-
dous influence on the detector’s accuracy and efficiency,
the direct translation of general-purpose CNN networks to
object detection by merely replacing the final classification
layers with a detection head does not constitute an optimal
solution.

Ultra-compact detectors, for instance, MobileNet+ SSD
[47] and Mobile-YOLO [113], emerged precisely from the
replacement of the backbone network integrated into sin-
gle-stage detectors (SSD [47] and YOLOvV3 [77], respec-
tively) with an even smaller and lighter CNN architecture,
such as MobileNet [47] and MobileNetV2 [48], explicitly
conceived for mobile vision applications. The adoption as a
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starting point of a macroarchitecture based on a unified
pipeline primarily oriented toward higher inference speed,
jointly with the adoption as backbone of a slimmer and
simplified network model, enables building high-speed
detection systems. This simplistic approach, however,
delivers processing times that fall short of real-time per-
formance and, worse yet, an accuracy level far below the
values reported for state-of-the-art approaches.

The design of appropriate architectural solutions
requires a more comprehensive approach, based on the
exploration and application of techniques and methods
compliant to the singularities of each of the components in
the detection pipeline, aimed at increasing accuracy and
reducing both complexity and size in order to achieve a
more desirable latency-accuracy trade-off. In this regard,
the present work evidences the strong attention the neck
has attracted from the research community, an interest that
sharply contrasts with the lack of contributions focused
explicitly on the detection head structure, usually derived
directly from the detection framework adopted as the base
architecture. The role played by the neck in modern object
detection frameworks is particularly relevant for localiza-
tion tasks. More specifically, it is responsible for the gen-
eration of high-resolution representations
[86, 88, 89, 95, 111, 120], the exploitation of multi-scale
feature maps [48, 72], and the fusion of the latter to ini-
tially extend and refine the features extracted by the
backbone, and consequently, enable the detection of both
objects with different scale values and small-sized targets.

Inaddition to the overview on the several architectural solu-
tions that shape current lightweight detection pipelines, a vast
numberofsignificanttechniquesandfactorsregardingthedesign
process have emerged as a result of the analysis performed
throughout Sect. 3 on dozens of publications focused on the
construction of both detection systems and, in general, on ultra-
compactCNNsnetworks. Amongthecollectionofarchitectural
modificationsdiscussed,itispossibletopinpointafairnumberof
points and practices that remain a shared research focus for the
three different components in an object detection framework:
(i) the joint exploitation of low-level features, extracted in early
stagesofthenetworkandcriticalforlocalization,andhigh-level
features, extracted in late stages and fundamental for classifica-
tion[91,94,97-99,102,103,109,115];(ii)thepropersizingofthe
receptive field for learning high-resolution features
[91,92,94,101, 107, 134]; (iii) the configuration of the number
and dimensions of convolutional filters
[49,91,93,94,96, 104, 105, 107, 112, 117], with both factors
havingasubstantialimpactonthenetworkaccuracyaswellason
thesizeandcomputationalcomplexityofthederivedmodels,and
with the decomposition of convolutional filters
[48,91,92,95,97, 108, 111] being particularly relevant in this
respect;(iv)thedesignofoperationsmoreefficientthanstandard
convolutions

[48,50,91-93,95,97,98,102,105,108,111,116,128];and(v)the
exploitation of channel correlation, an approach comprising
some of the most popular methods such as the use of shortcut
connections[48,98-100,103,105-108,114,125,129]andgroup
convolutions[54,108,132].

The rational choice of a detection framework and a base
backbone architecture, both small-sized, together with the
introduction of tweaks eminently oriented to the reduction
of the size and complexity of the underlying CNN network
(while also accuracy-compliant), has already produced
promising results, as reflected by the evaluation data col-
lected in Tables 1 and 2. Even though there are some works
such as
[52,91, 97,99, 100, 103, 107, 111, 114, 125, 133, 135] that
report very low latency values, thereby confirming the
feasibility of real-time object detection on edge devices,
there is still an overwhelming majority of them that either
fail to achieve such efficiency or present significant gaps in
the evaluation that somewhat blur the results presented
above. Regarding the latter point, the tables list: (i) works
that have not considered execution speed as a metric for
efficiency assessment, relying merely on the number and
computational cost of the operations involved
[47, 49, 53,96, 101, 128, 131, 134]; (ii) studies that provide
no information about the devices used for the execution
and testing of the models, reporting in many of those cases
only the hardware configuration used for training
[47, 49, 53, 93, 96, 98, 101, 102, 105, 112, 128, 131]; and
even (iii) publications that report real-time performance but
only for solutions tested on desktop devices with high-
powered graphics, and, therefore, do not experience the
hard memory and computational constraints that charac-
terize the on-device paradigm
[50, 92, 94, 95, 101, 108, 109, 115, 129].

These absences do not tarnish the remarkable work done
so far on the miniaturization of DL-based detection solu-
tions. However, they do represent and direct us to highly
relevant issues that need to be addressed in future work.
We conclude the present study by briefly discussing those
challenges, identifying specific research problems, and
pointing out possible approaches to be explored.

With particular regard to the challenges that still lie
ahead, there is, generally speaking, a notable absence of
specific discussion on factors closely related to the support
hardware configurations used in lightweight detection
systems, precisely in a domain where hardware limitations
constitute the principal point to consider for building
proper detection frameworks. Instead, with the exception
of two specific studies that include memory access cost
[52] and energy consumption [136] in their analysis,
researchers have primarily focused their efforts on evalu-
ating how efficient and robust the conceived approaches
are, eminently adopting the number of operations required
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and, less frequently, the execution speed of the derived
models as efficiency metrics. Moreover, the portfolio of
DL-oriented hardware acceleration solutions has grown in
the last few years as a result of advances in the mobile
sector and also the development of novel cutting-edge
chipsets designed ad hoc accelerating artificial intelligence
tasks. Although GPUs have become a de facto standard
when it comes to real-time DL inference on edge devices,
there is still an important gap in the study and exploitation
of modern AI accelerators.

Leaving hardware-specific issues aside, several other
issues emerge from the research performed, in this case,
related to the design and assessment of detection frame-
works and their underlying architecture. Thus, although
CNNs have meant a tremendous step forward in computer
vision, enabling the automation of feature extraction and
thereby reducing the need for human intervention in the
solution-making process, the design of both lightweight
detection frameworks and, in general, of CNN architec-
tures optimized for low-power hardware platforms is usu-
ally the result of an in-depth research effort, derived from
expert knowledge and mostly driven by an exhaustive
exploration of the myriad of existing operations and design
alternatives, all of which makes the process of finding an
optimal configuration costly. When evaluating the solu-
tions found in the literature reviewed, a significant disparity
can be intuitively observed in the decisions made as part of
the protocols used to evaluate and compare the proposed
approaches. The heterogeneity observed on matters such as
the dataset used, the hyperparameters configuration, or the
testing hardware, although it does not invalidate the
reported results, definitely introduces a certain degree of
uncertainty. Indeed, it is for this reason that, despite being a
standard practice, we have avoided using specific accuracy
or efficiency values in the present study to substantiate the
observations derived.

Despite the recent tremendous interest and subsequent
progress on DL object detection models deployable on
mobile and embedded devices, we still observe a fair
number of substantial questions that remain to be answered
to reach a desirable level of maturity. Therefore, we have
outlined some potential future lines of work that could lead
to further steps toward such maturity:

e Incorporating to the evaluation of additional hardware-
related aspects for on-device solutions that may affect
their final performance, by either generalizing the study
of energy consumption and memory access cost men-
tioned above or by considering other relevant factors,
for instance, parallel processing or how to use current
multi-core architectures effectively.

e Exploring the suitability of next-generation Al acceler-
ation devices and electronic components, not just for
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the sake of determining which alternative is more
optimal for the problem of interest but also to explore
additional questions of interest such as: (i) to what
extent their joint exploitation is possible and, if so, what
specific benefits this would bring in terms of efficiency
or the extent to which it allows for easing computa-
tional constraints and thus increasing accuracy; or (ii)
how much their use impacts energy consumption.

e Assessing whether the lightweight-detector-related
methods discussed are able to exploit the capabilities
of the modern acceleration hardware and, if necessary,
further investigating new techniques for devising mod-
els that can effectively make use of such specific
hardware configurations.

e Simplifying and streamlining the design of architectures
for on-device vision-based detection solutions. In recent
years, a number of studies have been developed to
automate the search for solutions, given a space of
potentially desirable optimization techniques and
parameterizations. Such techniques, collectively known
as NAS, have already shown enormous potential
[112, 138-144] and are undoubtedly a promising
approach to automatically synthesize more optimal
network designs, incorporating hardware-specific met-
rics such as latency and power consumption into the
objective function that guides the solution search.

e Benchmarking the performance of light-weight object
detectors in a greater-fairness context or configuration.
While it may be impractical to compare all recently
proposed detectors, we believe it would be of great
interest to the research community to establish a
common evaluation framework for the most represen-
tative detectors in order to execute a unified
comparison.
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