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Abstract: A class of bivariate infinite series solutions of the elliptic and hyperbolic Kepler equations
is described, adding to the handful of 1-D series that have been found throughout the centuries. This
result is based on an iterative procedure for the analytical computation of all the higher-order partial
derivatives of the eccentric anomaly with respect to the eccentricity e and mean anomaly M in a
given base point (ec, Mc) of the (e, M) plane. Explicit examples of such bivariate infinite series are
provided, corresponding to different choices of (ec, Mc), and their convergence is studied numerically.
In particular, the polynomials that are obtained by truncating the infinite series up to the fifth degree
reach high levels of accuracy in significantly large regions of the parameter space (e, M). Besides
their theoretical interest, these series can be used for designing 2-D spline numerical algorithms for
efficiently solving Kepler’s equations for all values of the eccentricity and mean anomaly.

Keywords: elliptic kepler equation; hyperbolic kepler equation; orbital mechanics; astrodynamics;
celestial mechanics

1. Introduction

In the Newtonian approximation, the time dependence of the relative position of
two distant or spherically symmetric bodies that move in each other’s gravitational field
can be written with explicit analytical formulas involving a finite number of terms only
when the eccentricity, e, is equal to 0 or 1, corresponding to circular and parabolic orbits,
respectively [1]. For 0 < e < 1 and for e > 1, such evolution can be obtained by solving for
E one of the following two Kepler Equations (KEs) (see e.g., Chapter 4 of Ref. [1]),

M = f (e, E) =
{

E− e sin E, for e < 1
e sinh E− E, for e > 1

, (1)

where M and E are measures of the epoch and the angular position called the mean and
the eccentric anomaly, respectively (for convenience, the same symbols are used here for
the elliptic and hyperbolic anomalies, even though they are defined in different ways).

For any given value of e, Equation (1) can be solved numerically for E by using a
root-finding algorithm for the nonlinear equation f (e, E)−M = 0 (see Ref. [2] for an his-
torical overview). In particular, efficient strategies based on the Newton–Raphson iteration
method or one its variants have been applied to the elliptic [3–12] and
hyperbolic [13–16] KEs.

Moreover, a handful of infinite series solutions of Equation (1) have also been found
throughout the centuries (see Chapter 3 in Ref. [2]). The solution for 0 < e < 1 has been
written as an expansion in powers of e [17], or as an expansion in the basis functions
sin(nM) with coefficients proportional to the values Jn(e) of Bessel functions [18,19]. Levi-

Civita [20,21] described a series in powers of the combination z =
e exp(

√
1−e2)

1+
√

1−e2 . Finally,
Stumpff found an infinite series expansion in powers of M [22].

This article describes a class of solutions of KEs, Equation (1), in terms of bivariate
infinite series in powers of both e and M,
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E =
∞

∑
k=0

∞

∑
q=0

ck,q (e− ec)
k(M−Mc)

q, (2)

with coefficients ck,q depending on the choice of the base values (ec, Mc). These solutions
converge locally around (ec, Mc), and can be used to devise 2-D spline algorithms for the
numerical computation of the eccentric anomaly E for every (e, M) [23], generalizing the
1-D spline methods that have been described recently [24,25]. Since they do not require
the evaluation of transcendental functions in the generation procedure, splines based on
polynomial expansions, such as the 1-D cubic spline of Refs. [24,25], or the 2-D quintic
spline of Ref. [23], which is based on the solutions presented here, are more convenient for
numerical computations than expansions in terms of trigonometric functions.

2. Methods

Let the unknown exact solution of Equation (1) be

E = g(e, M). (3)

If the analytical expression of the partial derivatives of g(e, M) were known, a bivariate
Taylor expansion could be written for any choice of base values ec, Ec, Mc = f (ec, Ec), so
that Equation (2) would be demonstrated with the coefficients given by

ck,q =
1

k!q!

[
∂k+qg

∂ek∂Mq (ec, Mc)

]
. (4)

To obtain such derivatives, we notice that the definitions in Equations (1) and (3) imply
the identity,

E = g(e, f (e, E)). (5)

In this expression, e and E are considered to be independent variables. Therefore, by
taking the differential, we obtain,

dE =
∂g
∂e

(e, f (e, E))de +
∂g
∂M

(e, f (e, E))
[

∂ f
∂e

(e, E)de +
∂ f
∂E

(e, E)dE
]

. (6)

Since e and E are independent, the coefficients of dE and de must cancel separately.
This condition can be used to obtain the partial derivatives of g. Taking also into account
Equations (1) and (3), the cancellation of the coefficient of dE implies,

∂g
∂M

(e, M) =
1

∂ f
∂E (e, g(e, M))

≡ λ

1− eC
, (7)

where we have defined the parameter λ and the functions C such that λ = 1 and
C = cos g(e, M), for e < 1, or λ = −1 and C = cosh g(e, M), for e > 1. As it could
be expected, Equation (7) coincides with the usual rule for the derivative of the inverse
function when e is considered to be a fixed parameter [2,22]. The cancellation of the
coefficient of de in Equation (6) implies,

∂g
∂e

(e, M) = − ∂g
∂M

(e, M)
∂ f
∂e

(e, g(e, M)) ≡ S
1− eC

, (8)

with S defined as S = sin g(e, M), for e < 1, or S = sinh g(e, M), for e > 1. In the case of
the elliptic KE, the result of Equation (8) was used in Ref. [19] to derive an expansion in the
basis sin nM.

Equations (7) and (8), taken together with Equations (1) and (3), can be used for the
iterative computation of all the higher order derivatives entering Equation (2) for e 6= 1.
The calculations can be simplified by expressing all the derivatives in terms of only λ, S,
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and C, and using the following identities, which can be derived from the definitions of S
and C and Equations (7) and (8),

∂S
∂e

(e, M) =
C S

1− e C
,

∂S
∂M

(e, M) =
λ C

1− e C
, (9)

∂C
∂e

(e, M) = − λ S2

1− e C
,

∂C
∂M

(e, M) = − S
1− e C

. (10)

The second order derivatives can then be obtained by applying the operators ∂
∂e

and ∂
∂M and the rules of Equations (9) and (10) to the first order derivatives given in

Equations (7) and (8). The result is,

∂2g
∂e2 (e, M) =

2 C S
(1− e C)2 −

λ e S3

(1− e C)3 , (11)

∂2g
∂M2 (e, M) = − λ e S

(1− e C)3 , (12)

∂2g
∂e∂M

(e, M) =
λ C

(1− e C)2 −
e S2

(1− e C)3 . (13)

Similarly, the third order derivatives can be obtained by applying the operators ∂
∂e and

∂
∂M and the rules of Equations (9) and (10) to the second order derivatives, Equations (11)–(13).
The result is,

∂3g
∂e3 (e, M) =

6 C2 S− 3 λ S3

(1− e C)3 − 10 λ e C S3

(1− e C)4 +
3 e2 S5

(1− e C)5 , (14)

∂3g
∂M3 (e, M) = − e C

(1− e C)4 +
3 λ e2 S2

(1− e C)5 , (15)

∂3g
∂e2∂M

(e, M) =
2 λ C2 − 2 S2

(1− e C)3 − 7 e C S2

(1− e C)4 +
3 λ e2 S4

(1− e C)5 , (16)

∂3g
∂e∂M2 (e, M) = − λ S

(1− e C)3 −
4 λ e C S
(1− e C)4 +

3 e2 S3

(1− e C)5 . (17)

All the higher order derivatives can be obtained by iterating this procedure. These
expressions are exact, but they depend on the unknown function g through S and C.
Nevertheless, taken together with Equation (3), they can be used to compute 2-D Taylor
series solutions of KEs. This can be done by choosing a pair of base values, ec and Ec,
corresponding to Mc = f (ec, Ec). The values of the coefficients entering Equations (4)
and (2) can then be computed by substituting λ = 1, S = sin Ec, C = cos Ec, for ec < 1, or
λ = −1, S = sinh Ec, C = cosh Ec, for ec > 1, in the expressions for the derivatives of g,

and by defining the zeroth order term ∂0g
∂e0 M0 (ec, Mc) = g(ec, Mc) = Ec. This procedure can

be used to build a class of bivariate infinite series solutions of the elliptic and hyperbolic
KEs, one for any given choice of base values. Three explicit examples will be given in
Section 3.

The determination of the radius of convergence for the univariate series solutions of
KEs has been a formidable mathematical problem (see Chapter 6 of Ref. [2]). In the case of
the bivariate series of Equations (2) and (4), the region of convergence in the (e, M) plane
can be estimated numerically as discussed in Section 3.

3. Examples, Discussion and Results

In this section, three examples of bivariate infinite series solutions of KEs are given.
They have been obtained from Equations (2) and (4) by applying the methods discussed in
Section 2 for the computation of the derivatives of g, for three different choices of the base
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values (ec, Mc). All the non-vanishing terms up to fifth order are shown explicitly. Since
g(e,−M) = −g(e, M), it is sufficient to solve KEs only for positive values of M. Moreover,
for e < 1 the M domain can be reduced to the interval 0 ≤ M ≤ π, and then the solution
for every M can be obtained by using the periodicity of f and g.

In all cases, it is convenient to define approximate solutions Sn obtained by truncating
the infinite series of Equation (2) keeping only the terms with k + q ≤ n, so that

Sn(e, M) =
n

∑
k=0

n−k

∑
q=0

ck,q (e− ec)
k(M−Mc)

q, (18)

with coefficients given by Equation (4). The errors En of the approximate solutions Sn can
then be evaluated in a self consistent way,

En(e, M) = |Sn(e, M)− Sn(e, f (e, Sn(e, M)))|. (19)

From a practical point of view, the convergence of the infinite series for certain values
of (e, M) means that En(e, M) should tend to decrease for increasing n. This idea is used
for obtaining an estimate of the region of convergence in the (e, M) parameter space by
comparing the average errors for lower and higher values of n with the following condition,

E1(e, M) + E2(e, M) + E3(e, M) >
3
2
[E4(e, M) + E5(e, M)]. (20)

A more refined criterion of convergence can be obtained by studying the scaling
behavior of the solutions. For this purpose, every point of the (e, M) plane is expressed in
terms of polar variables ρ, φ, defined as

e = ec + ρ cos φ, M = Mc + ρ sin φ. (21)

All the polynomials Sn(e, M) and their errors En(e, M) can then be thought of as
functions of ρ and φ. For a given value of φ, these functions are one dimensional, depending
only on ρ, which is a measure of the distance from the center (ec, Mc) in the (e, M) plane.
Thus, ρ can play a role similar to that of the embedding parameter q of the homotopy
analysis method [26], with the difference that ρ will not be assumed to be smaller than
1. Actually, the parameters ρ and φ will only be used in the intermediate steps and will
disappear from the final criteria of convergence.

If the bivariate series of Equations (2) and (4) converges in a certain point (e, M) along
a fixed direction φ, the error of the Sn approximation can be written as

En(ec + ρ cos φ, Mc + ρ sin φ) =
ρn+1

(n + 1)!

∣∣∣∣∂n+1g
∂ρn+1 (ec + ρ̄ cos φ, Mc + ρ̄ sin φ)

∣∣∣∣ ≡ ρn+1

(n + 1)!
βn+1(φ, ρ), (22)

where the derivative entering the definition of βn+1(φ, ρ) has to be computed for an
unknown value ρ̄ ∈ [0, ρ]. By plotting the actual numerical errors En in a direction φ for a
given base point (ec, Mc), it can be seen that the ρ dependence of βn+1 in the convergence
region is usually much milder than that of the factor ρn+1. As an example, Figure 1
shows such plots for the series centered around the point (ec, Mc) = (0, 0), choosing the
direction identified by the diagonal line M = πe (corresponding to tan φ = π). Along
this line, the error E5 is at the level of arithmetic double precision (εdouble = 2.23× 10−16)
for e = M

π . 0.0013. For almost all values of ρ < 1.21 (vertical magenta line in Figure 1),
corresponding to e < 0.367 and M < 1.15 rad, the errors En decrease as n increases, as
expected for a convergent series, except for the occasional inversion due to cancellations
that occur in one of the Sn (S2 around ρ ∼ 1 in the figure). For ρ > 1.21, E1, E3, and E4 mix,
and the series can be expected to diverge.
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Figure 1. Errors En(e, M) (in logarithmic scale) affecting the approximate polynomial solutions
Sn(e, M) of KE for (ec, Mc) = (0, 0) along the diagonal line M = πe of the (e, M) plane (thus
ρ =
√

1 + π2 e and tan φ = π). The Sn are obtained by truncating the infinite series of Equation (27)
up to degree n, for n = 1, · · · , 5. The vertical magenta line at ρ = 1.21 corresponds to the limit below
which convergence is obtained in this direction.

Similar results can be obtained for different directions φ and base points (ec, Mc). In
general, the linear behavior of log En in the convergence region corresponds to En ∝ ρn+1

with a very good approximation, so that En1 and E (n1+1)/(n2+1)
n2 scale with the same power

of ρ. This behavior can be made more regular by averaging out the possible oscillations
that occur in special directions for the individual En. This can be done by summing up
different En with the corresponding scale exponent, as in the following combinations:

E sc
12 = (E3/2

1 + E2)/2, (23)

which scales as ρ3, like E2 but with greater regularity;

E sc
123 = (E2

1 + E4/3
2 + E3)/3, (24)

which scales as ρ4, like E3; and

E sc,
345 = (E3/2

3 + E6/5
4 + E5)/3, and E sc

45 = (E6/5
4 + E5)/2, (25)

which scale as ρ6, like E5 but–again–with greater regularity. Equation (22) and these scaling
laws are expected to hold only when the Taylor series converges. Therefore, two additional
numerical criteria of convergence are given by the inequalities

E sc
345 < E sc

12, and E sc
45 < E sc

123. (26)

These conditions ensure that the errors not only tend to decrease for increasing n,
but they also scale as expected when the series is convergent. For the solution based on
(ec, Mc) = (0, 0) and evaluated along the diagonal direction M = πe, these conditions give
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the limiting value ρ = 1.21 shown in Figure 1. By inspecting the figure it can be seen that
the bounds of Equation (26) produce a reliable result in this case. Moreover, as shown in
Section 3.1, Equation (26) also reproduces the known radius of convergence of Lagrange
series [2,17] in the limit where it can be compared with our bivariate series. The bounds of
Equation (26) are usually more stringent than those obtained from Equation (20), but there
may be special directions for which the opposite may be true. Hereafter, a conservative
definition of the region of convergence will be used by imposing Equations (20) and (26) at
the same time.

3.1. Bivariate Infinite Series Solution of the Elliptic Kepler Equation around ec = 0, Mc = 0

Choosing ec = 0, Ec = 0, so that Mc = 0 rad, λc = 1, Sc = 0, Cc = 1, the series of
Equations (2) and (4) becomes,

E = M + eM + e2M + e3M− e
6

M3 + e4M− 2
3

e2M3 + · · · (27)

This case can be compared with Lagrange’s [17] and Stumpff’s [22] univariate series,
which are,

E = M + e sin M +
e2

2
sin 2M− e3

8
[sin M− 3 sin(3M)] +

e4

6
[−1 + 4 cos(2M)] sin(2M)+

+
e5

192
[23 + 44 cos(2M) + 125 cos(4M)] sin(M) + · · · (Lagrange), (28)

and

E =
M

1− e
− M3e

3!(1− e)4 +
M5e(9e + 1)

5!(1− e)7 + · · · (Stumpff), (29)

(see Ref. [2] Equation (3.25)). It is easy to see that the Taylor expansions (up to fifth order) of
Equations (28) and (29) around M = 0 and e = 0, respectively, coincide with the bivariate
series of Equation (27). Of course, their expansions in a neighborhood of (ec, Mc) = (0, 0)
have to coincide since all these series solve the same equation around the same point.
However, the complete series are different from one another, and their numerical values
will also be increasingly different for increasing distance from the base point (0, 0). As a
consequence, their regions of convergence will also be different.

Figure 2 shows the contour levels in the (e, M) plane of the error E5 affecting the fifth
degree polynomial approximation, S5, as given by Equation (27). The error E5 is kept below
∼10−4 rad for e . 0.5 and M . π/2, and is reduced to the level ∼10−13 rad for e ∼ 0.01
and M ∼ π/1000. Moreover, the fifth order approximation reaches machine precision
εdouble = 2.23× 10−16 in an entire neighborhood of size ∆e ∼ 2× 10−3, ∆M ∼ 3× 10−3 rad
around the point (ec, Mc). The continuous magenta curve marks the boundary of the region
of convergence of the bivariate series of Equation (27), as estimated with Equations (26) and
Equation (20). This can be compared with the limit e < 0.6627434193 for the convergence
of Lagrange’s univariate series (see page 26 of Ref. [2]), which is represented by a vertical
dotted line in the figure. For M� 1, our limit for the convergence of the bivariate series
agrees very well with that of Lagrange’s series, as it could be expected since in such regime
the first terms of the Taylor expansion for sin M provide a very good approximation. Not
surprisingly, for larger values of M the vertical dotted line separates from the magenta line,
so that the region of convergence of the bivariate series is different from that of Lagrange.
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Figure 2. Contour levels of the error E5(e, M) affecting the fifth degree polynomial approximation,
Equation (27), as a function of the eccentricity e and the mean anomaly M (both in logarithmic scales).
The continuous magenta curve marks the boundary of the region of convergence, as estimated with
Equations (20) and (26). The vertical dotted line represents the limit of the region of convergence for
Lagrange’s univariate series.

3.2. Bivariate Infinite Series Solution of the Elliptic Kepler Equation around ec =
1
2 , Mc =

π−1
2

Choosing ec = 1
2 , Ec = π

2 , so that Mc = π−1
2 , λc = 1, Sc = 1, Cc = 0, and

defining δ = e− ec = e− 1
2 and ∆ = M − Mc = M − π−1

2 , the series of Equations (2)
and (4) becomes,

E =
π

2
+ ∆ + δ− δ2 + 2δ ∆ + ∆2

4
+
−3δ3 − 5δ2∆− δ ∆2 + ∆3

8
+

+
85δ4 + 244δ3∆ + 222δ2∆2 + 52δ ∆3 − 11∆4

192
+

+
37δ5 − 35δ4∆− 318δ3∆2 − 374δ2∆3 − 119δ ∆4 + 9∆5

384
+ · · · (30)

Figure 3 shows the contour levels in the (e, M) plane of the error E5 affecting the fifth
degree polynomial approximation, S5, as given by Equation (30). The continuous magenta
curve marks the boundary of the region of convergence, as estimated with Equations (20)
and (26). It can be seen that the Taylor series based in the mid point ( 1

2 , π−1
2 ) converges in a

significant part of the (e, M) plane. Moreover, the fifth degree polynomial reaches machine
precision εdouble in an elongated neighborhood of the point ( 1

2 , π−1
2 ) along a diagonal line

crossing the entire e domain from (e = 0, M = 1.57 rad) to (e ' 1, M = 0.56 rad), with
transverse size (along the M direction) ranging from ∼3× 10−3 rad close to the endpoints,
to ∼10−2 rad around the center (ec, Mc).
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Figure 3. Contour levels of the error E5 affecting the fifth degree polynomial approximation of
Equation (30), as a function of the eccentricity e and the mean anomaly M. The continuous magenta
curve marks the boundary of the region of convergence, as estimated with Equations (20) and
Equation (26). (Notice that here the axes for e and M are linear).

3.3. Bivariate Infinite Series Solution of the Hyperbolic Kepler Equation around ec = 2, Mc = 0

Choosing ec = 2, Ec = 0, so that Mc = 0, λc = −1, Sc = 0, Cc = 1, defining
δ = e− ec = e− 2, the series of Equations (2) and (4) becomes,

E = M−Mδ + Mδ2 − M3

3
−Mδ3 +

7M3δ

6
+ Mδ4 − 8M3δ2

3
+

19M5

60
+ · · · , (31)

where now E and M indicate the (dimensionless) hyperbolic anomalies.
For the hyperbolic motion, the values of e and M can vary in infinite ranges, 1 < e < ∞,

0 < M < ∞ (due to the symmetry for M → −M). In Figure 4, the contour levels in the
(e, M) plane of the error E5 for the solution (31) have been drawn in the region e ≤ 4,
M ≤ 2. This region has been chosen in such a way that the plot contains the magenta
curve marking the boundary of the region of convergence, as estimated with Equations (20)
and (26). Moreover, the fifth degree polynomial reaches machine precision εdouble in an
entire neighborhood of size ∆e ∼ 8× 10−3, ∆M ∼ 2× 10−3, around the point (ec, Mc).
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Figure 4. Contour levels of the error E5 affecting the �fth degree polynomial approximation of
Equation (31), as a function of the eccentricity eand the mean anomaly M (both in logarithmic scale).
The continuous magenta curve marks the boundary of the region of convergence, as estimated with
Equations (20) and (26).

4. Conclusions

I described an analytical procedure for the exact computation of all the higher-order
partial derivatives of the elliptic and hyperbolic eccentric anomalies with respect to both
the eccentricity eand the mean anomaly M. Although such derivatives depend implicitly
on the solution of KE, they can be computed explicitly by choosing a couple of base values
ec and Ec for the eccentricity and the eccentric anomaly, so that the corresponding value M c

of the mean anomaly can be obtained without solving KE. For any such choice of (ec, M c),
an in�nite Taylor series expansion in both M and ecan then be written, which is expected
to converge in a suitable neighborhood of (ec, M c). A procedure for estimating the actual
size of the region of convergence has also been given.

Three explicit examples of such series were then provided, two for the elliptic and one
for the hyperbolic KE. Each of them, for �xed base point, turns out to converge in large parts
of the (e, M ) plane. For (e, M ) close to (ec, M c) within a range De � DM / p = O(10� 3),
the polynomial obtained by truncating the in�nite series up to the �fth degree reaches an
accuracy at the level of machine double precision. Further away from (ec, M c), but still
within the region of convergence, higher order terms should be introduced to maintain
such an accuracy.

Since these new solutions converge locally around (ec, M c), a suitable set of them,
centered around different (ec, M c) and truncated up to a certain degree, can be used to
design an algorithm for the numerical computation of the function E(e, M ) for every value
of (e, M ). The resulting polynomials will form a 2-D spline [ 23], generalizing the 1-D
spline that has been proposed in Refs. [24,25] for solving KE for every M when eis �xed.
This bivariate spline may be used for accelerating computations involving the repetitive
solution of Kepler's equation for several different values of eand M [23], as for exoplanet
search [27,28] or for the implementation of Enke's method [1].
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